Skip to main content

Stiction Detection and Quantification as an Application of Optimization

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8580))

Abstract

Stiction is a major problematic phenomenon affecting industrial control valves. An approach for detection and quantification of valve stiction using an one-stage optimization technique is proposed. A Hammerstein Model that comprises a complete stiction model and a process model is identified from industrial process data. Some difficulties in the identification approach are pointed out and strategies to overcome them are suggested, namely the smoothing of discontinuity points. A simulation study demonstrates the application of the proposed technique.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stenman, A., Gustafsson, F., Forsman, K.: A segmentation-based method for detection of stiction in control valves. Int. J. Adapt. Control 17(7-9), 625–634 (2003)

    Article  MATH  Google Scholar 

  2. Srinivasan, R., Rengaswamy, R., Narasimhan, S., Miller, R.: Control loop performance assessment. 2. Hammerstein model approach for stiction diagnosis. Ind. Eng. Chem. Res. 44(17), 6719–6728 (2005)

    Article  Google Scholar 

  3. Lee, K., Ren, Z., Huang, B.: Novel closed-loop stiction detection and quantification method via system identification. In: International Symposium on Advanced Control of Industrial Processes (2008)

    Google Scholar 

  4. Choudhury, S., Jain, M., Shah, S.L.: Stiction – Definition, modelling, detection and quantification. J. Process Contr. 18, 232–243 (2008)

    Article  Google Scholar 

  5. Jelali, M.: Estimation of valve stiction in control loops using separable least-squares and global search algorithms. J. Process Contr. 18(7-8), 632–642 (2008)

    Article  Google Scholar 

  6. Ivan, L., Lakshminarayanan, S.: A new unified approach to valve stiction quantification and compensation. Ind. Eng. Chem. Res. 48(7), 3474–3483 (2009)

    Article  Google Scholar 

  7. Karra, S., Karim, M.: Comprehensive methodology for detection and diagnosis of oscillatory control loops. Control Eng. Pract. 17(8), 939–956 (2009)

    Article  Google Scholar 

  8. Lee, K., Tamayo, E., Huang, B.: Industrial implementation of controller performance analysis technology. Control Eng. Pract. 18(2), 147–158 (2010)

    Article  Google Scholar 

  9. Qi, F., Huang, B.: Estimation of distribution function for control valve stiction estimation. J. Process Contr. 21(8), 1208–1216 (2011)

    Article  Google Scholar 

  10. Srinivasan, B., Spinner, T., Rengaswamy, R.: A reliability measure for model based stiction detection approaches. In: Symposium on Advanced Control of Chemical Processes, pp. 750–755 (2012)

    Google Scholar 

  11. Babji, S., Nallasivam, U., Rengaswamy, R.: Root cause analysis of linear closed-loop oscillatory chemical process systems. Ind. Eng. Chem. Res. 51(42), 13712–13731 (2012)

    Article  Google Scholar 

  12. Ljung, L.: System identification: theory for the user. Prentice-Hall, New Jersey (1999)

    Google Scholar 

  13. Vandenberghe, L.: Convex optimization techniques in system identification. Technical report, University of California (2014)

    Google Scholar 

  14. Eskinat, E., Johnson, S., Luyben, W.: Use of Hammerstein models in identification of nonlinear systems. AIChE J. 37(2), 255–268 (1991)

    Article  Google Scholar 

  15. Choudhury, A., Thornhill, N., Shah, S.: Modelling valve stiction. Control Eng. Pract. 13(5), 641–658 (2005)

    Article  Google Scholar 

  16. Kano, M., Maruta, H., Kugemoto, H., Shimizu, K.: Practical model and detection algorithm for valve stiction. In: IFAC Symposium on Dynamics and Control of Process Systems, pp. 859–864. Elsevier, United Kingdom (2004)

    Google Scholar 

  17. He, Q., Wang, J., Pottmann, M., Qin, J.: A curve fitting method for detecting valve stiction in oscillating control loops. Ind. Eng. Chem. Res. 46(13), 4549–4560 (2007)

    Article  Google Scholar 

  18. Chen, S., Tan, K., Huang, S.: Two-layer binary tree data-driven model for valve stiction. Ind. Eng. Chem. Res. 47(8), 2842–2848 (2008)

    Article  Google Scholar 

  19. Zabiri, H., Mazuki, N.: A black-box approach in modeling valve stiction. J. Eng. Appl. Sci. 6(5), 277–284 (2010)

    Google Scholar 

  20. Wang, J., Sano, A., Chen, T., Huang, B.: A blind approach to identification of Hammerstein systems. In: IFAC World Congress on Block-oriented Nonlinear System Identification, pp. 293–312. Springer, London (2010)

    Chapter  Google Scholar 

  21. Karthiga, D., Kalaivani, S.: A new stiction compensation method in pneumatic control valves. Int. J. Electron. Comput. Sci. Eng., 2604–2612 (2012)

    Google Scholar 

  22. Wu, Z., Bai, F., Yang, X., Zhang, L.: An exact lower order penalty function and its smoothing in nonlinear programming. Optimization 53(1), 51–68 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Wu, Z., Lee, H., Bai, F., Zhang, L.: Quadratic smoothing approximation to l 1 exact penalty function in global optimization. J. Ind. Manag. Optim. 1(4), 533–547 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Meng, K., Li, S., Yang, X.: A robust SQP method based on a smoothing lower order penalty function. Optimization 58(1), 23–38 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Goldfeld, S., Quandt, R.: Nonlinear methods in econometrics. North-Holland Publishing Company (1972)

    Google Scholar 

  26. Tishler, A., Zang, I.: A switching regression method using inequality conditions. J. of Econometrics 11(2-3), 259–274 (1979)

    Article  MATH  Google Scholar 

  27. Zang, I.: Discontinuous optimization by smoothing. Math. Oper. Res. 6(1), 140–152 (1981)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Brásio, A.S.R., Romanenko, A., Fernandes, N.C.P. (2014). Stiction Detection and Quantification as an Application of Optimization. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2014. ICCSA 2014. Lecture Notes in Computer Science, vol 8580. Springer, Cham. https://doi.org/10.1007/978-3-319-09129-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09129-7_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09128-0

  • Online ISBN: 978-3-319-09129-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics