Skip to main content

Quell

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8496))

Abstract

We study the computational complexity of the puzzle Quell. The goal is to collect pearls by sliding a droplet of water over them in a grid map. The map contains obstacles. In each move, the droplet slides in one of the four directions to the maximal extent, until it is stopped by an obstacle. We show that any-Moves-all-Pearls (deciding whether it is possible to collect all the pearls using any number of moves) can be solved in polynomial time. In contrast, both any-Moves-max-Pearls (finding the maximum number of pearls that can be collected using any number of moves) and min-Moves-all-Pearls (finding the minimum number of moves required to collect all the pearls) are APX-hard, although the corresponding decision problems are in FPT. We also present a simple 2-approximation for any-Moves-max-Pearls, and leave open the question whether min-Moves-all-Pearls admits a polynomial-time constant approximation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Yuster, R., Zwick, U.: Color-coding. Journal of the ACM 42, 844–856 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Asadpour, A., Goemans, M.X., Madry, A., Gharan, S.O., Saberi, A.: An O(logn / loglogn)-approximation algorithm for the asymmetric traveling salesman problem. In: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 379–389 (2010)

    Google Scholar 

  3. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain quantified boolean formulas. Information Processing Letters 8, 121–123 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  4. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Spring, Heidelberg (2008)

    Book  Google Scholar 

  5. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report 388. Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh (1976)

    Google Scholar 

  6. Crescenzi, P., Silvestri, R., Trevisan, L.: On weighted vs unweighted versions of combinatorial optimization problems. Information and Computation 167, 10–26 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Engels, B., Kamphans, T.: Randolphs robot game is NP-hard! Electronic Notes in Discrete Mathematics 25, 49–53 (2006)

    Article  MathSciNet  Google Scholar 

  8. Frieze, A.M., Galbiati, G., Maffioli, F.: On the worst-case performance of some algorithms for the asymmetric traveling salesman problem. Networks 12, 23–39 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hartline, J.R., Libeskind-Hadas, R.: The computational complexity of motion planning. SIAM Review 45, 543–557 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Håstad, J.: Some optimal inapproximability results. Journal of the ACM 48, 798–859 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hearn, R.A., Demaine, E.D.: Games, Puzzles, and Computation. CRC Press (2009)

    Google Scholar 

  12. Hock, M.: Exploring the Complexity of the UFO Puzzle. B.S.Thesis, Department of Computer Science, Carnegie Mellon University (2002), http://www.cs.cmu.edu/afs/cs/user/mjs/ftp/thesis-program/2002/hock.ps

  13. Khot, S., Kindler, G., Mossel, E., O’Donnell, R.: Optimal inapproximability results for MAX-CUT and other 2-Variable CSPs? In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, pp. 146–154 (2004)

    Google Scholar 

  14. Papadimitriou, C.H., Vempala, S.: On the approximability of the traveling salesman problem. Combinatorica 26, 101–120 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Jiang, M., Tejada, P.J., Wang, H. (2014). Quell. In: Ferro, A., Luccio, F., Widmayer, P. (eds) Fun with Algorithms. FUN 2014. Lecture Notes in Computer Science, vol 8496. Springer, Cham. https://doi.org/10.1007/978-3-319-07890-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07890-8_21

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07889-2

  • Online ISBN: 978-3-319-07890-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics