Skip to main content

Trabecular Bone Microstructure Investigation

  • Conference paper
  • 1170 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 283))

Abstract

Assessment of bone histomorphometry allows to determine the condition of the bones and thus to predict the occurrence, course, treatment planning and recovery for certain conditions within the skeletal system. Noninvasive acquisition of information about the structure of the bone on the basis of image data makes it possible in a relatively fast and easy way to determine a number of key parameters describing the bone. As part of the study, the number of histomorphometric parameters for samples from different patients and various areas of cancellous bone were determined and compared based on images from X-ray microcomputed tomography. Samples of cancellous bone, in the form of cubes, derived from healthy subjects and patients diagnosed with a osteoarthritis and also from the core of the femoral head and from peripheral areas. The results demonstrate the significant differences in the structure of trabecular bone tissue derived from different people.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Browne, J.G., Mesallati, T., Picard, C., Reeve-Arnold, K., Reilly, P.O., Daly, J.S., Casey, M.C., Walsh, J.B., Taylor, D.: Investigating bone quality in patients with hip fractures using newer bioengineering techniques. Bone 47(1), 80–81 (2010)

    Google Scholar 

  2. Genant, H.K., Gordon, C., Jiang, Y., Lang, T.F., Link, T.M., Majumdar, S.: Advanced imaging of bone macro and micro structure. Bone 25(1), 149–152 (1999)

    Article  Google Scholar 

  3. Issever, A.S., Vieth, V., Lotter, A., Meier, N., Laib, A., Newitt, D., Majumdar, S., Link, T.M.: Local differences in the trabecular bone structure of the proximal femur depicted with high-spatial-resolution MR imaging and multisection CT. Academic Radiology 9(12), 1395–1406 (2002)

    Article  Google Scholar 

  4. Donnelly, E.: Methods for assessing bone quality: a review. Clinical Orthopaedics and Related Research 469(8), 2128–2138 (2011)

    Article  Google Scholar 

  5. Parfitt, A.M., et al.: Bone Histomorphometry: Standarization of Nomenclature, Symbols, and Units. Journal of Bone and Mineral Research 2(6), 595–610 (1987)

    Article  Google Scholar 

  6. Topoliński, T., Mazurkiewicz, A., Jung, S., Cichański, A., Nowicki, K.: Microarchitecture parameters describe bone structure and its strength better than BMD. The Scientific World Journal, Article ID: 502781 (2012)

    Google Scholar 

  7. Perilli, E., Baleani, M., Ohman, C., Fognani, R., Baruffaldi, F., Viceconti, M.: Dependence of mechanical compressive strength on local variations in microarchitecture in cancellous bone of proximal human femur. Journal of Biomechanics 41(2), 438–446 (2008)

    Article  Google Scholar 

  8. Kazakia, G.J., Burghardt, A.J., Cheung, S., Majumdar, S.: Assessment of bone tissue mineralization by conventional x-ray microcomputed tomography: Comparison with synchrotron radiation microcomputed tomography and ash measurements. Medical Physics 35(7), 3170–3179 (2008)

    Article  Google Scholar 

  9. Laib, A., Rüegsegger, P.: Calibration of trabecular bone structure measurements of in vivo three-dimensional peripheral quantitative computed tomography with 28-microm-resolution microcomputed tomography. Bone 24(1), 35–39 (1999)

    Article  Google Scholar 

  10. Barger-Lux, M.J., Recker, R.R.: Toward Understanding Bone Quality. Transilial Bone Biopsy and Bone Histomorphometry. Clinical Reviews in Bone and Mineral Metabolism 4(3), 167–176 (2006)

    Article  Google Scholar 

  11. Tanck, E., Homminga, J., van Lenthe, G.H., Huiskes, R.: Increase in bone volume fraction precedes architectural adaptation in growing bone. Bone 28(6), 650–654 (2001)

    Article  Google Scholar 

  12. Tamminen, I.S., Isaksson, H., Aula, A.S., Honkanen, E., Jurvelin, J.S., Kröger, H.: Reproducibility and agreement of micro-CT and histomorphometry in human trabecular bone with different metabolic status. Journal of Bone and Mineral Metabolism 29(4), 442–448 (2011)

    Article  Google Scholar 

  13. Griffith, J.F., Genant, H.K.: Bone mass and architecture determination: state of the art. Best practice & research. Clinical Endocrinology & Metabolism 22(5), 737–764 (2008)

    Google Scholar 

  14. Perilli, E., Baleani, M., Öhman, C., Baruffaldi, F., Viceconti, M.: Structural parameters and mechanical strength of cancellous bone in the femoral head in osteoarthritis do not depend on age. Bone 41, 760–768 (2007)

    Article  Google Scholar 

  15. Boutroy, S., Vilayphiou, N., Roux, J.-P., Delmas, P.D., Blain, H., Chapurlat, R.D., Chavassieux, P.: Comparison of 2D and 3D bone microarchitecture evaluation at the femoral neck, among postmenopausal women with hip fracture or hip osteoarthritis. Bone 49(5), 1055–1061 (2011)

    Article  Google Scholar 

  16. Nazarian, A., Snyder, B.D., Zurakowski, D., Müller, R.: Quantitative micro-computed tomography: a non-invasive method to assess equivalent bone mineral density. Bone 43(2), 302–311 (2008)

    Article  Google Scholar 

  17. Goulet, R.W., Goldstein, S.A., Ciarelli, M.J., Kuhn, L.J., Brown, M.B., Feldkamp, L.A.: The relationship between the structural and orthogonal compressive properties of trabecular bone. Journal of Biomechanics 27(4), 375–389 (1994)

    Article  Google Scholar 

  18. Srikanth, V.K., Fryer, J.L., Zhai, G., Winzenberg, T.M., Hosmer, D., Jones, G.: A meta-analysis of sex differences prevalence, incidence and severity of osteoarthritis. Osteoarthritis and Cartilage 13(9), 769–781 (2005)

    Article  Google Scholar 

  19. Hochberg, M., Lethbridge-Cejku, M., Tobin, J.: Bone mineral density and osteoarthritis: Data from the Baltimore Longitudinal Study of Aging. Osteoarthritis and Cartilage 12, 45–48 (2004)

    Article  Google Scholar 

  20. Burr, D.B., Gallant, M.A.: Bone remodelling in osteoarthritis. Nature Reviews Rheumatology 8(11), 665–673 (2012)

    Article  Google Scholar 

  21. Lajeunesse, D., Pelletier, J.P., Martel-Pelletier, J.: Osteoporosis and osteoarthritis: bone is the common battleground. Medicographia 32(4), 391–398 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulina Popik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Popik, P. et al. (2014). Trabecular Bone Microstructure Investigation. In: Piętka, E., Kawa, J., Wieclawek, W. (eds) Information Technologies in Biomedicine, Volume 3. Advances in Intelligent Systems and Computing, vol 283. Springer, Cham. https://doi.org/10.1007/978-3-319-06593-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06593-9_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06592-2

  • Online ISBN: 978-3-319-06593-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics