Skip to main content

Angular Resolution Study of Vectors Representing Subtle Spiculated Structures in Mammograms

  • Conference paper
Book cover Information Technologies in Biomedicine, Volume 3

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 283))

  • 1153 Accesses

Abstract

In this paper various multiscale transformations, such as contourlets, curvelets, tensor and complex wavelets, were examined in terms of the precise representation of texture directionality in medical images. In particular, subtle radiating and spiculated structures in mammograms were modeled with sparse vectors of the image linear expansions. Important properties of angular resolution, angular selectivity and shift invariance have been evaluated with simple phantoms. According to the experimental results, the complex wavelets have been proved to be the most effective tool in mammogram preprocessing to extract and uniquely represent relevant spicular symptoms for accurate diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adel, M., Zuwala, D., Rasigni, M., Bourennane, S.: Noise reduction on mammographic phantom images. Electronic Letters on Computer Vision and Image Analysis 5(4), 64–74 (2006)

    Google Scholar 

  2. Barnes, G.T., Chakraborty, D.P.: Radiographic mottle and patient exposure in mammography. Radiology 145, 815–821 (1982)

    Google Scholar 

  3. American College of Radiology (ACR): Breast Imaging Reporting and Data System BI-RADS, 3rd edn. American College of Radiology (1998)

    Google Scholar 

  4. Chakraborty, J., Rangayyan, R.M., Banik, S., Mukhopadhyay, S., Desautels, J.E.L.: Statistical Measures of Orientation of Texture for the Detection of Architectural Distortion in Prior Mammograms of Interval Cancer. Journal of Electronic Imaging 21(3), 033010:1–13 (2012)

    Google Scholar 

  5. Dziukowa, R.J.: Mammografia w diagnostyce raka sutka, Warszawa (1998)

    Google Scholar 

  6. Ichikawa, T., Matsubara, T., Hara, T., Fujita, H., Endo, T., Iwase, T.: Automated detection method for architectural distorion areas on mammograms based on morphological processing and surface analysis. In: Medical Imaging: Image Processing, vol. 5370, pp. 920–925 (2004)

    Google Scholar 

  7. Jasionowska, M., Przelaskowski, A., Rutczynska, A., Wroblewska, A.: A two - step method for detection of architectural distortions in mammograms. In: Piętka, E., Kawa, J. (eds.) Information Technologies in Biomedicine. AISC, vol. 69, pp. 73–84. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Jasionowska, M., Przelaskowski, A.: Subtle directional mammographic findings in multiscale domain. In: Piętka, E., Kawa, J. (eds.) ITIB 2012. LNCS, vol. 7339, pp. 77–84. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Jasionowska, M., Przelaskowski, A., Jóźwiak, R.: Charaxteristics of architectural distortions in mammograms - extraction of texture orientation with Gabor filters. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2010, Part I. LNCS, vol. 6374, pp. 420–430. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Jiang, H., Tiu, W., Yamamoto, S., Iisaku, S.: Automatic recognition of spicules in mammograms. In: Del Bimbo, A. (ed.) ICIAP 1997. LNCS, vol. 1311, pp. 396–403. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  11. Jiang, H., Tiu, W., Yamamoto, S., Iisaku, S.: Detection of spicules in mammograms. In: Proc. of IEEE ICIP 1997, vol. III, pp. 520–523 (1997)

    Google Scholar 

  12. Jiang, H., Tiu, W., Yamamoto, S., Iisaku, S.: A method for automatic detection of spicules in mammograms. Journal of Computer Aided Diagnosis of Medical Images 2, 23–31 (1998)

    Google Scholar 

  13. Karssemeijer, N., Te Brake, G.M.: Detection of stellate distortions in mammograms. IEEE Transactions on Medical Imaging 15(5), 611–619 (1996)

    Article  Google Scholar 

  14. Kegelmeyer Jr., W.P.: Evalution of stellate lesion detection in a standard mammogram data set. In: Bowyer, K.W., Astley, S. (eds.) State of the Art in Digital Mammographic Image Analysis, pp. 262–279. World Scientific (1993)

    Google Scholar 

  15. Kegelmeyer Jr., W.P.: Computer detection of stellate lesions in mammograms. In: Proc. 1992 SPIE, Conf. on Biomedical Image Processing and 3-D Microscopy, vol. 1660, pp. 446–454 (1992)

    Google Scholar 

  16. Kobatake, H., Yoshinaga, Y.: Detection of stellate distortion in mammograms. IEEE Trans. Med. Imaging MI-15(3), 235–245 (1996)

    Article  Google Scholar 

  17. Matsubara, T., Fukuoka, D., Yagi, N., Hara, T., Fujita, H., Inenaga, Y., Kasai, S., Kano, A., Endo, T., Iwase, T.: Detection method of architectural distortion based on analysis of structure of mammary gland on mammograms. International Congress Series, vol. 1281, pp. 1036–1040 (2005)

    Google Scholar 

  18. Nemoto, M., Honmura, S., Shimizu, A.: A pilot study of architectural distortion detection in mammograms based on characteristics of line shadows. Int. J. CARS 4, 2736 (2009)

    Article  Google Scholar 

  19. Pachoud, M., Lepori, D., Valley, J.F., Verdun, F.R.: A new test phantom with different breast tissue compositions for image quality assessment in conventional and digital mammography. Physics in Medicine and Biology 49, 5267–5281 (2004)

    Article  Google Scholar 

  20. Rangayyan, R.M., Banik, S., Desautels, J.E.L.: Computer-Aided Detection of Architectural Distortion in Prior Mammograms of Interval Cancer. Journal of Digital Imaging 23(5), 611–631 (2010)

    Article  Google Scholar 

  21. Sampat, M.P., Markey, M.K., Bovik, A.C.: Computer-aided detection and diagnosis in mammography. IEEE Publication (2004); Selesnick, I.W., Baraniuk, R.G., Kingsbury, N.G.: The Dual-Tree Complex Wavelet Transform. IEEE Signal Processing Magazine, 124–151 (November 2005)

    Google Scholar 

  22. Webb, S.: The Physics of Medical Imaging. IOP Publishing, Adam Hilger, Bristol, Philadelphia (1988)

    Book  Google Scholar 

  23. Zwinggelaar, R., Astley, S.M., Boggis, C.R.M., Taylor, C.J.: Linear structures in mammographic images: detection and classification. IEEE Trans. on Medical Imaging 23(9), 1077–1086 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Jasionowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Jasionowska, M., Przelaskowski, A. (2014). Angular Resolution Study of Vectors Representing Subtle Spiculated Structures in Mammograms. In: Piętka, E., Kawa, J., Wieclawek, W. (eds) Information Technologies in Biomedicine, Volume 3. Advances in Intelligent Systems and Computing, vol 283. Springer, Cham. https://doi.org/10.1007/978-3-319-06593-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06593-9_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06592-2

  • Online ISBN: 978-3-319-06593-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics