Skip to main content

A Logic for Specifying Stochastic Actions and Observations

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8367))

Abstract

We present a logic inspired by partially observable Markov decision process (POMDP) theory for specifying agent domains where the agent’s actuators and sensors are noisy (causing uncertainty). The language features modalities for actions and predicates for observations. It includes a notion of probability to represent the uncertainties, and the expression of rewards and costs are also catered for. One of the main contributions of the paper is the formulation of a sound and complete decision procedure for checking validity of sentences: a tableau method which appeals to solving systems of equations. The tableau rules eliminate propositional connectives, then, for all open branches of the tableau tree, systems of equations are generated and checked for feasibility. This paper presents progress made on previously published work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bacchus, F.: Representing and Reasoning with Uncertain Knowledge. MIT Press, Cambridge (1990)

    Google Scholar 

  2. Bacchus, F., Halpern, J.Y., Levesque, H.J.: Reasoning about noisy sensors and effectors in the situation calculus. Artificial Intelligence 111(1-2), 171–208 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bonet, B., Geffner, H.: Planning and control in artificial intelligence: A unifying perspective. Applied Intelligence 14(3), 237–252 (2001)

    Article  MATH  Google Scholar 

  4. Boutilier, C., Poole, D.: Computing optimal policies for partially observable decision processes using compact representations. In: Proc. of 13th Natl. Conf. on Artificial Intelligence, pp. 1168–1175 (1996)

    Google Scholar 

  5. Boutilier, C., Reiter, R., Soutchanski, M., Thrun, S.: Decision-theoretic, high-level agent programming in the situation calculus. In: Proceedings of the 17th National Conference on Artificial Intelligence (AAAI 2000) and of the 12th Conference on Innovative Applications of Artificial Intelligence (IAAI 2000), pp. 355–362. AAAI Press, Menlo Park (2000)

    Google Scholar 

  6. Chellas, B.: Modal Logic: An introduction. Cambridge University Press, Cambridge (1980)

    Book  MATH  Google Scholar 

  7. Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press (1963&1998)

    Google Scholar 

  8. De Weerdt, M., De Boer, F., Van der Hoek, W., Meyer, J.J.: Imprecise observations of mobile robots specified by a modal logic. In: Proc. of Fifth Annual Conference of the Advanced School for Computing and Imaging (ASCI 1999), pp. 184–190 (1999)

    Google Scholar 

  9. Fagin, R., Halpern, J.Y.: Reasoning about knowledge and probability. Journal of the ACM 41(2), 340–367 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fagin, R., Halpern, J.Y., Megiddo, N.: A logic for reasoning about probabilities. Information and Computation 87, 78–128 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gabaldon, A., Lakemeyer, G.: \(\mathcal{ESP}\): A logic of only-knowing, noisy sensing and acting. In: Proc. of 22nd Natl. Conf. on Artificial Intelligence (AAAI 2007), pp. 974–979. AAAI Press (2007)

    Google Scholar 

  12. Gass, S.I.: Linear programming: Methods and applications, 5th edn. Dover Publications (2010)

    Google Scholar 

  13. Halpern, J.Y.: Reasoning about Uncertainty. The MIT Press, Cambridge (2003)

    MATH  Google Scholar 

  14. Hughes, G., Cresswell, M.: A New Introduction to Modal Logic, Routledge, New York (1996)

    Google Scholar 

  15. Iocchi, L., Lukasiewicz, T., Nardi, D., Rosati, R.: Reasoning about actions with sensing under qualitative and probabilistic uncertainty. ACM Transactions on Computational Logic 10(1), 5:1–5:41 (2009)

    Google Scholar 

  16. Kooi, B.: Probabilistic dynamic epistemic logic. Journal of Logic, Language and Information 12(4), 381–408 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Monahan, G.E.: A survey of partially observable Markov decision processes: Theory, models, and algorithms. Management Science 28(1), 1–16 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  18. Murty, K.G.: Linear programming, revised edn. John Wiley and sons (1983)

    Google Scholar 

  19. Nilsson, N.: Probabilistic logic. Artificial Intelligence 28, 71–87 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  20. Poole, D.: Decision theory, the situation calculus and conditional plans. Linköping Electronic Articles in Computer and Information Science 8(3) (1998)

    Google Scholar 

  21. Puterman, M.: Markov Decision Processes: Discrete Dynamic Programming. Wiley, New York (1994)

    Book  MATH  Google Scholar 

  22. Reiter, R.: Knowledge in action: logical foundations for specifying and implementing dynamical systems. MIT Press, Massachusetts (2001)

    Google Scholar 

  23. Rens, G., Lakemeyer, G., Meyer, T.: A logic for specifying agent actions and observations with probability. In: Kersting, K., Toussaint, M. (eds.) Proc. of 6th Starting AI Researchers’ Symposium (STAIRS 2012). Frontiers in Artificial Intelligence and Applications, vol. 241, pp. 252–263. IOS Press (2012), http://www.booksonline.iospress.nl/Content/View.aspx?piid=31509

  24. Rens, G., Meyer, T., Lakemeyer, G.: On the logical specification of probabilistic transition models. In: Proc. of 11th Intl. Symposium on Logical Formalizations of Commonsense Reasoning, COMMONSENSE 2013 (May 2013)

    Google Scholar 

  25. Rens, G., Meyer, T., Lakemeyer, G.: A sound and complete decision procedure for SLAOP. Tech. rep., Centre for Artificial Intelligence Research (University of KwaZulu-Natal, and CSIR Meraka), South Africa (July 2013), http://www.cair.za.net/sites/default/files/outputs/The-SLAOP-decision-procedure.pdf

  26. Rens, G., Varzinczak, I., Meyer, T., Ferrein, A.: A logic for reasoning about actions and explicit observations. In: Li, J. (ed.) AI 2010. LNCS (LNAI), vol. 6464, pp. 395–404. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  27. Rens, G., Meyer, T., Lakemeyer, G.: SLAP: Specification logic of actions with probability. Journal of Applied Logic (2013), www.sciencedirect.com/science/article/pii/S157086831300075X , http://dx.doi.org/10.1016/j.jal.2013.09.001

  28. Sanner, S., Kersting, K.: Symbolic dynamic programming for first-order POMDPs. In: Proc. of 24th Natl. Conf. on Artificial Intelligence (AAAI 2010), pp. 1140–1146. AAAI Press (2010)

    Google Scholar 

  29. Shirazi, A., Amir, E.: Probabilistic modal logic. In: Proc. of 22nd Natl. Conf. on Artificial Intelligence (AAAI 2007), pp. 489–494. AAAI Press (2007)

    Google Scholar 

  30. Smallwood, R., Sondik, E.: The optimal control of partially observable Markov processes over a finite horizon. Operations Research 21, 1071–1088 (1973)

    Article  MATH  Google Scholar 

  31. Tarski, A.: A decision method for elementary algebra and geometry. Tech. rep., The RAND Corporation, Santa Monica, Calif. (1957)

    Google Scholar 

  32. Thiébaux, S., Hertzberg, J., Schoaff, W., Schneider, M.: A stochastic model of actions and plans for anytime planning under uncertainty. International Journal of Intelligent Systems 10(2), 155–183 (1995)

    Article  Google Scholar 

  33. Van Benthem, J., Gerbrandy, J., Kooi, B.: Dynamic update with probabilities. Studia Logica 93(1), 67–96 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  34. Van Diggelen, J.: Using Modal Logic in Mobile Robots. Master’s thesis, Cognitive Artificial Intelligence, Utrecht University (2002)

    Google Scholar 

  35. Wang, C., Schmolze, J.: Planning with POMDPs using a compact, logic-based representation. In: Proc. of 17th IEEE Intl. Conf. on Tools with Artif. Intell (ICTAI 2005), pp. 523–530. IEEE Computer Society, Los Alamitos (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Rens, G., Meyer, T., Lakemeyer, G. (2014). A Logic for Specifying Stochastic Actions and Observations. In: Beierle, C., Meghini, C. (eds) Foundations of Information and Knowledge Systems. FoIKS 2014. Lecture Notes in Computer Science, vol 8367. Springer, Cham. https://doi.org/10.1007/978-3-319-04939-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04939-7_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04938-0

  • Online ISBN: 978-3-319-04939-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics