Skip to main content

An Adaptive Wavelet Stochastic Collocation Method for Irregular Solutions of Partial Differential Equations with Random Input Data

  • Conference paper
  • First Online:
Sparse Grids and Applications - Munich 2012

Abstract

A novel multi-dimensional multi-resolution adaptive wavelet stochastic collocation method (AWSCM) for solving partial differential equations with random input data is proposed. The uncertainty in the input data is assumed to depend on a finite number of random variables. In case the dimension of this stochastic domain becomes moderately large, we show that utilizing a hierarchical sparse-grid AWSCM (sg-AWSCM) not only combats the curse of dimensionality but, in contrast to the standard sg-SCMs built from global Lagrange-type interpolating polynomials, maintains fast convergence without requiring sufficiently regular stochastic solutions. Instead, our non-intrusive approach extends the sparse-grid adaptive linear stochastic collocation method (sg-ALSCM) by employing a compactly supported wavelet approximation, with the desirable multi-scale stability of the hierarchical coefficients guaranteed as a result of the wavelet basis having the Riesz property. This property provides an additional lower bound estimate for the wavelet coefficients that are used to guide the adaptive grid refinement, resulting in the sg-AWSCM requiring a significantly reduced number of deterministic simulations for both smooth and irregular stochastic solutions. Second-generation wavelets constructed from a lifting scheme allows us to preserve the framework of the multi-resolution analysis, compact support, as well as the necessary interpolatory and Riesz property of the hierarchical basis. Several numerical examples are given to demonstrate the improved convergence of our numerical scheme and show the increased efficiency when compared to the sg-ALSCM method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I.M. Babuška, R. Tempone, G.E. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42(2), 800–825 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. I.M. Babuška, R. Tempone, G.E. Zouraris, Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation. Comput. Methods Appl. Mech. Eng. 194(12–16), 1251–1294 (2005)

    Article  MATH  Google Scholar 

  3. I. Babuška, F. Nobile, R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45(3), 1005–1034 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Barth, A. Lang, Multilevel monte carlo method with applications to stochastic partial differential equations. Int. J. Comput. Math. 89(18), 2479–2498 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Barth, C. Schwab, N. Zollinger, Multi-level monte carlo finite element method for elliptic pdes with stochastic coefficients. Numer. Math. 119(1), 123–161 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Barth, A. Lang, C. Schwab, Multilevel monte carlo method for parabolic stochastic partial differential equations. Bit 53(1), 3–27 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. J. Beck, F. Nobile, L. Tamellini, R. Tempone, Stochastic spectral Galerkin and collocation methods for PDEs with random coefficients: a numerical comparison, in Spectral and High Order Methods for Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol. 76 (Springer, Berlin, 2011), pp. 43–62.

    Google Scholar 

  8. J. Beck, F. Nobile, L. Tamellini, R. Tempone, Convergence of quasi-optimal stochastic Galerkin methods for a class of PDES with random coefficients. Comput. Math. Appl. 67(4), 732–751 (2014)

    Article  MathSciNet  Google Scholar 

  9. H.-J. Bungartz, M. Griebel, Sparse grids. Acta Numer. 13, 1–123 (2004)

    Article  MathSciNet  Google Scholar 

  10. J. Charrier, R. Scheichl, A.L. Teckentrup, Finite element error analysis of elliptic PDEs with random coefficients and its application to multilevel Monte Carlo methods. SIAM J. Numer. Anal. 51(1), 322–352 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. C. Chui, J. Wang, A general framework of compactly supported splines and wavelets. J. Approx. Theory 71(3), 263–304 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Cohen, I. Daubechies, J. Feauveau, Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math. 45(5), 485–560 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. A. Cohen, W. Dahmen, R. DeVore, Adaptive wavelet methods for elliptic operator equations – convergence rates. Math. Comput. 70, 27–75 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. A. Cohen, W. Dahmen, R. DeVore, Adaptive wavelet methods for elliptic operator equations II – beyond the elliptic case. Found. Comput. Math. 2, 203–245 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. S. Dahlke, W. Dahmen, K. Urban, Adaptive wavelet methods for saddle point problems – optimal convergence rates. SIAM J. Numer. Anal. 40, 1230–1262 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. W. Dahmen, A. Kunoth, Adaptive wavelet methods for linear-quadratic elliptic control problems: convergence rates. SIAM J. Control Optim. 43, 1640–1675 (2002)

    Article  MathSciNet  Google Scholar 

  17. I. Daubechies, Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41(7), 909–996 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  18. I. Daubechies, Wavelets - algorithms and applications. Science 262(5139), 1589–1591 (1993)

    Article  Google Scholar 

  19. D. Diaz, M. Gunzburger, A. Kunoth, An adaptive wavelet viscosity method for hyperbolic conservation laws. Numer. Math. 24, 1388–1404 (2008)

    Google Scholar 

  20. T.J. Dijkema, C. Schwab, R. Stevenson, An adaptive wavelet method for solving high-dimensional elliptic PDEs. Constr. Approx. 30(3), 423–455 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. H. Elman, C. Miller, Stochastic collocation with kernel density estimation. Technical report, Department of Computer Science, University of Maryland, 2011

    Google Scholar 

  22. G. Fishman, Monte Carlo: Concepts, Algorithms, and Applications. Springer Series in Operations Research (Springer, New York, 1996)

    Google Scholar 

  23. J. Foo, X. Wan, G. Karniadakis, The multi-element probabilistic collocation method (ME-PCM): error analysis and applications. J. Comput. Phys. 227(22), 9572–9595 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. P. Frauenfelder, C. Schwab, R.A. Todor, Finite elements for elliptic problems with stochastic coefficients. Comput. Methods Appl. Mech. Eng. 194(2–5), 205–228 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. T. Gerstner, M. Griebel, Dimension-adaptive tensor-product quadrature. Computing 71(1), 65–87 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. R.G. Ghanem, P.D. Spanos, Stochastic Finite Elements: A Spectral Approach (Springer, New York, 1991)

    Book  MATH  Google Scholar 

  27. M. Griebel, Adaptive sparse grid multilevel methods for elliptic PDEs based on finite differences. Computing 61(2), 151–179 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  28. M. Gunzburger, A. Kunoth, Space-time adaptive wavelet methods for optimal control problems constrained by parabolic evolution equations. SIAM J. Control Optim. 49(3), 1150–1170 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  29. J.D. Jakeman, R. Archibald, D. Xiu, Characterization of discontinuities in high-dimensional stochastic problems on adaptive sparse grids. J. Comput. Phys. 230(10), 3977–3997 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  30. A. Klimke, B. Wohlmuth, Algorithm 847: Spinterp: piecewise multilinear hierarchical sparse grid interpolation in matlab. ACM Trans. Math. Softw. 31(4), 561–579 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. F.Y. Kuo, C. Schwab, I.H. Sloan, Quasi-Monte Carlo methods for high-dimensional integration: the standard (weighted Hilbert space) setting and beyond. ANZIAM J. Aust. N. Z. Ind. Appl. Math. J. 53(1), 1–37 (2011)

    MATH  MathSciNet  Google Scholar 

  32. F.Y. Kuo, C. Schwab, I.H. Sloan, Quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients. SIAM J. Numer. Anal. 50(6), 3351–3374 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  33. O.P. Le Maître, O.M. Knio, Spectral Methods for Uncertainty Quantification (Springer, New York, 2010)

    Book  MATH  Google Scholar 

  34. O.P. Le Maître, O.M. Knio, H.N. Najm, R.G. Ghanem, Uncertainty propagation using Wiener-Haar expansions. J. Comput. Phys. 197(1), 28–57 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  35. O.P. Le Maître, H.N. Najm, R.G. Ghanem, O.M. Knio, Multi-resolution analysis of Wiener-type uncertainty propagation schemes. J. Comput. Phys. 197(2), 502–531 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  36. C.F. Li, Y.T. Feng, D.R.J. Owen, D.F. Li, I.M. Davis, A Fourier-Karhunen-Loève discretization scheme for stationary random material properties in SFEM. Int. J. Numer. Meth. Eng. (2007) www.interscience.wiley.com

  37. M. Loève, Probability Theory. I. Graduate Texts in Mathematics, vol. 45, 4th edn. (Springer, New York, 1977)

    Google Scholar 

  38. M. Loève, Probability Theory. II. Graduate Texts in Mathematics, vol. 46, 4th edn. (Springer, New York, 1978)

    Google Scholar 

  39. X. Ma, N. Zabaras, An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations. J. Comput. Phys. 228(8), 3084–3113 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  40. X. Ma, N. Zabaras, An adaptive high-dimensional stochastic model representation technique for the solution of stochastic partial differential equations. J. Comput. Phys. 229(10), 3884–3915 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  41. L. Mathelin, M.Y. Hussaini, T.A. Zang, Stochastic approaches to uncertainty quantification in CFD simulations. Numer. Algorithms 38(1–3), 209–236 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  42. H.G. Matthies, A. Keese, Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comput. Methods Appl. Mech. Eng. 194(12–16), 1295–1331 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  43. P. Nitsche, Sparse approximation of singularity functions. Constr. Approx. 21, 63–81 (2005)

    MATH  MathSciNet  Google Scholar 

  44. F. Nobile, R. Tempone, Analysis and implementation issues for the numerical approximation of parabolic equations with random coefficients. Int. J. Numer. Methods Eng. 80(6–7), 979–1006 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  45. F. Nobile, R. Tempone, C.G. Webster, A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2309–2345 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  46. F. Nobile, R. Tempone, C.G. Webster, An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2411–2442 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  47. B. Øksendal, Stochastic Differential Equations: An Introduction with Applications. Universitext, 6th edn. (Springer, Berlin, 2003)

    Google Scholar 

  48. P. Oswald, Hierarchical conforming finite-element methods for the biharmonic equation. SIAM J. Numer. Anal. 29(6), 1610–1625 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  49. C. Schwab, R. Stevenson, Adaptive wavelet algorithms for elliptic PDE’s on product domains. Math. Comput. 77(261), 71–92 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  50. C. Schwab, R. Stevenson, Fast evaluation of nonlinear functionals of tensor product wavelet expansions. Numer. Math. 119, 765–786 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  51. C. Schwab, S. Tokareva, High order approximation of probabilistic shock profiles in hyperbolic conservation laws with uncertain initial data. Technical report, SAM Research Report No. 2011–53, 2011

    Google Scholar 

  52. S. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl. Akad. Nauk SSSR 4, 240–243 (1963)

    Google Scholar 

  53. W. Sweldens, The lifting scheme: a custom-design construction of biorthogonal wavelets. Appl. Comput. Harmon. Anal. 3(2), 186–200 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  54. W. Sweldens, The lifting scheme: a construction of second generation wavelets. SIAM J. Math. Anal. 29(2), 511–546 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  55. W. Sweldens, P. Schroder, Building your own wavelets at home. Computer 90(1995:5), 72–107 (2000)

    Google Scholar 

  56. R.A. Todor, C. Schwab, Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients. IMA J. Numer. Anal. 27(2), 232–261 (2006)

    Article  MathSciNet  Google Scholar 

  57. N. Wiener, The homogeneous chaos. Am. J. Math. 60, 897–936 (1938)

    Article  MathSciNet  Google Scholar 

  58. D. Xiu, J. Hesthaven, High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27, 1118–1139 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  59. D. Xiu, G.E. Karniadakis, The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  60. G. Zhang, M. Gunzburger, Error analysis of a stochastic collocation method for parabolic partial differential equations with random input data. SIAM J. Numer. Anal. 50(4), 1922–1940 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

Max Gunzburger was supported by the US Air Force Office of Scientific Research (AFOSR) under grant number FA9550-11-1-0149. Clayton G. Webster was supported by the US AFOSR under grant number 1854-V521-12. Also supported by the Laboratory Directed Research and Development (LDRD) Program at the Oak Ridge National Laboratory (ORNL). The ORNL is operated by UT-Battelle, LLC, for the United States Department of Energy under Contract DE-AC05-00OR22725. Guannan Zhang was supported by the US AFOSR under grant number FA9550-11-1-0149. Also supported by the Advanced Simulation Computing Research (ASCR), Department of Energy, through the Householder Fellowship at ORNL. The ORNL is operated by UT-Battelle, LLC, for the United States Department of Energy under Contract DE-AC05-00OR22725.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Gunzburger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Gunzburger, M., Webster, C.G., Zhang, G. (2014). An Adaptive Wavelet Stochastic Collocation Method for Irregular Solutions of Partial Differential Equations with Random Input Data. In: Garcke, J., Pflüger, D. (eds) Sparse Grids and Applications - Munich 2012. Lecture Notes in Computational Science and Engineering, vol 97. Springer, Cham. https://doi.org/10.1007/978-3-319-04537-5_6

Download citation

Publish with us

Policies and ethics