Skip to main content

Asynchronous Cellular Automaton Based Modeling of Nonlinear Dynamics of Neuron

  • Chapter
  • First Online:
  • 845 Accesses

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

A modeling approach of nonlinear dynamics of neurons by an asynchronous cellular automaton is introduced. It is shown that an asynchronous cellular automaton neuron model can realize not only typical nonlinear response characteristics of neurons but also their underlying occurrence mechanisms (i.e., bifurcation scenarios). The model can be implemented as an asynchronous sequential logic circuit, whose control parameter is the pattern of wires that can be dynamically updated in a dynamic reconfigurable FPGA. An on-FPGA learning algorithm (i.e., on-FPGA rewiring algorithm) is presented and is used to tune the model so that it reproduces nonlinear response characteristics of a neuron.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R. Vogelstein, U. Mallik, T. Vogelstein, G. Cauwenberghs, Dynamically reconfigurable silicon array of spiking neurons with conductance-based synapses. IEEE Trans. Neural Networks 18(1), 253–265 (2007)

    Article  Google Scholar 

  2. H. Chen, S. Saïandghi, L. Buhry, S. Renaud, Real-time simulation of biologically realistic stochastic neurons in vlsi. IEEE Trans. Neural Networks 21(9), 1511–1517 (2010)

    Google Scholar 

  3. A. Basu, S. Ramakrishnan, C. Petre, S. Koziol, S. Brink, P.E. Hasler, Neural dynamics in reconfigurable silicon. IEEE Trans. Biomed. Circuits Syst. 4(5), 311–319 (2010)

    Google Scholar 

  4. J.V. Arthur, K.A. Boahen, Silicon-neuron design: a dynamical systems approach. IEEE Trans. Circuits Syst. I, 58(5), 1034–1043 (2011)

    Google Scholar 

  5. E. Ros, E. Ortigosa, R. Agís, R. Carrillo, M. Arnold, Real-time computing platform for spiking neurons (RT-spike). IEEE Trans. Neural Networks 17(4), 1050–1063 (2006)

    Article  Google Scholar 

  6. R. Weinstein, M. Reid, R. Lee, Methodology and design flow for assisted neural-model implementations in FPGAs. IEEE Trans. Neural Syst. Rehabil. Eng. 15(1), 83–93 (2007)

    Article  Google Scholar 

  7. M. Pearson, G. Pipe, B. Mitchinson, K. Gurney, C. Melhuish, I. Gilhespy, M. Nibouche, Implementing spiking neural networks for real-time signal-processing and control applications: a model-validated FPGA approach. IEEE Trans. Neural Networks 18(5), 1472–1487 (2007)

    Article  Google Scholar 

  8. J.M. Nageswaran, N. Dutt, J.L. Krichmar, A. Nicolau, A.V. Veidenbaum, A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors. Neural Netw. 22(5–6), 791–800 (2009)

    Article  Google Scholar 

  9. T. Berger, D. Glanzman, Toward Replacement Parts for the Brain: Implantable Biomimetic Electronics as Neural Prostheses (The MIT Press, Cambridge, 2005)

    Google Scholar 

  10. Z. Zumsteg, C. Kemere, S. O’Driscoll, G. Santhanam, R. Ahmed, K. Shenoy, T. Meng, Power feasibility of implantable digital spike sorting circuits for neural prosthetic systems. IEEE Trans. Neural Syst. Rehabil. Eng. 13(3), 272–279 (2005)

    Article  Google Scholar 

  11. T. Matsubara, T. Torikai, Neuron-like responses and bifurcations of a generalized asynchronous sequential logic spiking neuron model. IEICE Trans. Fundam. E95-A(8), 1317–1328 (2012)

    Google Scholar 

  12. T. Hishiki, H. Torikai, A Novel Rotate-and-Fire Digital Spiking Neuron And its Neuron-like Bifurcations and Responses. IEEE Trans. Neural Networks 22(5), 752–767 (2011)

    Article  Google Scholar 

  13. T. Matsubara, H. Torikai, T. Hishiki, A generalized rotate-and-fire digital spiking neuron model and its on-FPGA learning. IEEE Trans. Circuits Syst. II Express Briefs 58(10), 677–681 (2011)

    Article  Google Scholar 

  14. T. Matsubara, H. Torikai, A novel asynchronous digital spiking neuron model and its various neuron-like bifurcations and responses, in Proceedings of International Joint Conference on, Neural Networks, 2011, pp. 741–748

    Google Scholar 

  15. S. Hashimoto, H. Torikai, A novel hybrid spiking neuron: bifurcations, responses, and on-chip learning. IEEE Trans. Circuits Syst. I 57(8), 2168–2181 (2010)

    Google Scholar 

  16. E.M. Izhikevich, Which model to use for cortical spiking neurons? IEEE Trans. Neural Networks 15(5), 1063–1070 (2004)

    Article  Google Scholar 

  17. E.M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting (The MIT Press, Cambridge, 2006)

    Google Scholar 

  18. J. Victor, K. Purpura, Metric-space analysis of spike trains: theory, algorithms and application. Netw. Comput. Neural Syst. 8(2), 127–164 (May 1997)

    Google Scholar 

  19. A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. physiol. 117(4), 500–544 (1952)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Torikai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Torikai, H., Matsubara, T. (2014). Asynchronous Cellular Automaton Based Modeling of Nonlinear Dynamics of Neuron. In: In, V., Palacios, A., Longhini, P. (eds) International Conference on Theory and Application in Nonlinear Dynamics (ICAND 2012). Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-02925-2_9

Download citation

Publish with us

Policies and ethics