Skip to main content

Self-organization and Emergence of Dynamical Structures in Neuromorphic Atomic Switch Networks

  • Chapter
Memristor Networks

Abstract

The self-organization of dynamical structures in complex natural systems is associated with an intrinsic capacity for computation. Beginning from the context of modern trends in neuromorphic engineering, this work introduces an effort toward the construction of purpose-built dynamical systems. Known as atomic switch networks (ASN), these systems consist of highly interconnected, physically recurrent networks of inorganic synapses (atomic switches). By combining the advantages of controlled design with those of self-organization, the functional topology of ASNs has been shown to produce emergent system-wide dynamics and a diverse set of complex behaviors with striking similarity to those observed in many natural systems including biological neural networks and assemblies. Numerical modeling and experimental investigations of their operational characteristics and intrinsic dynamical properties have facilitated progress toward implementation in neuromorphic reservoir computing. These achievements demonstrate the utility of ASNs as a uniquely scalable physical platform capable of exploring the dynamical interface of complexity, neuroscience, and engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbott, L.F., Nelson, S.B.: Synaptic plasticity: taming the beast. Nat. Neurosci. 3, 1178–1183 (2000)

    Google Scholar 

  2. Achard, S., Bullmore, E.: Efficiency and cost of economical brain functional networks. PLoS Comput. Biol. 3, e17 (2007)

    Google Scholar 

  3. Afifi, A., Ayatollahi, A., Raissi, F.S.TD.P.: Implementation using memristive nanodevice in CMOS-nano neuromorphic networks. IEICE Electron. Express 6, 148–153 (2009)

    Google Scholar 

  4. Alivisatos, A.P., Chun, M., Church, G.M., Greenspan, R.J., Roukes, M.L., Yuste, R.: The brain activity map project and the challenge of functional connectomics. Neuron 74, 970–974 (2012)

    Google Scholar 

  5. Alivisatos, A.P., Chun, M., Church, G.M., Deisseroth, K., Donoghue, J.P., Greenspan, R.J., McEuen, P.L., Roukes, M.L., Sejnowski, T.J., Weiss, P.S., et al.: The brain activity map. Science (2013)

    Google Scholar 

  6. Ananthanarayanan, R., Esser, S.K., Simon, H.D., Modha, D.S.: The cat is out of the bag: cortical simulations with 109 neurons, 1013 synapses. In: ACM Request Permissions (2009)

    Google Scholar 

  7. Anderson, P.: More is different. Science 177, 393–396 (1972)

    Google Scholar 

  8. Appeltant, L., Soriano, M.C., Van der Sande, G., Danckaert, J., Massar, S., Dambre, J., Schrauwen, B., Mirasso, C.R., Fischer, I.: Information processing using a single dynamical node as complex system. Nat. Commun. 2, 468 (2011)

    Google Scholar 

  9. Atiya, A.F., Parlos, A.G.: New results on recurrent network training: unifying the algorithms and accelerating convergence. IEEE Trans. Neural Netw. 11, 697–709 (2000)

    Google Scholar 

  10. Avizienis, A.V., Sillin, H.O., Martin-Olmos, C., Shieh, H.H., Aono, M., Stieg, A.Z., Gimzewski, J.K.: Neuromorphic atomic switch networks. PLoS ONE 7, e42772 (2012)

    Google Scholar 

  11. Avizienis, A.V., Martin-Olmos, C., Sillin, H.O., Aono, M., Gimzewski, J.K., Stieg, A.Z.: Morphological transitions from dendrites to nanowires in the electroless deposition of silver. Cryst. Growth Des. 13, 465–469 (2013)

    Google Scholar 

  12. Bak, P., Paczuski, M.: Complexity contingency, and criticality. Proc. Natl. Acad. Sci. USA 92, 6689 (1995)

    Google Scholar 

  13. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality. Phys. Rev. A 38, 364–374 (1988)

    MATH  MathSciNet  Google Scholar 

  14. Barabási, A.L., Albert, A.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    MathSciNet  Google Scholar 

  15. Barabási, A.L., Ravasz, E., Vicsek, T.: Deterministic scale-free networks. Physica A 299, 559–564 (2001)

    MATH  Google Scholar 

  16. Basheer, I.A., Hajmeer, M.: Artificial neural networks: fundamentals, computing, design, and application. J. Microbiol. Methods 43, 3–31 (2000)

    Google Scholar 

  17. Bassett, D.S., Greenfield, D.L., Meyer-Lindenberg, A., Weinberger, D.R., Moore, S.W., Bullmore, E.T.: Efficient physical embedding of topologically complex information processing networks in brains and computer circuits. PLoS Comput. Biol. 6, e1000748 (2010)

    Google Scholar 

  18. Bassett, D.S., Wymbs, N.F., Porter, M.A., Mucha, P.J., Carlson, J.M., Grafton, S.T.: Dynamic reconfiguration of human brain networks during learning. Proc. Natl. Acad. Sci. USA 108, 7641 (2011)

    Google Scholar 

  19. Beggs, J., Plenz, D.: Neuronal avalanches in neocortical circuits. J. Neurosci. 23, 11167 (2003)

    Google Scholar 

  20. Bertschinger, N., Natschläger, T.: Real-time computation at the edge of chaos in recurrent neural networks. Neural Comput. 16, 1413–1436 (2004)

    MATH  Google Scholar 

  21. Binder, P.M.: Computation: the edge of reductionism. Nature 459, 332–334 (2009)

    Google Scholar 

  22. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    MathSciNet  Google Scholar 

  23. Borghetti, J., Snider, G.S., Kuekes, P.J., Yang, J.J., Stewart, D.R., Williams, R.S.: ‘Memristive’, switches enable ‘Stateful’, logic operations via material implication. Nature 464, 873–876 (2010)

    Google Scholar 

  24. Bornholdt, S., Roehl, T.: Self-organized critical neural networks. Phys. Rev. E 67, 066118 (2003)

    Google Scholar 

  25. Bullmore, E., Sporns, O.: The economy of brain network organization. Nat. Rev. Neurosci. (2012)

    Google Scholar 

  26. Chang, T., Jo, S.-H., Kim, K.-H., Sheridan, P., Gaba, S., Lu, W.: Synaptic behaviors and modeling of a metal oxide memristive device. Appl. Phys. A 102, 857–863 (2011)

    Google Scholar 

  27. Chang, T., Jo, Short-Term, S.: Memory to long-term memory transition in a nanoscale memristor. ACS Nano (2011)

    Google Scholar 

  28. Chialvo, D.: Critical brain networks. Phys. A, Stat. Mech. Appl. 340, 756–765 (2004)

    Google Scholar 

  29. Chialvo, D.R.: Emergent complex neural dynamics. Nat. Phys. 6, 744–750 (2010)

    Google Scholar 

  30. Chialvo, D.R., Bak, P.: Learning from mistakes. arXiv 1997, adap-org, 7006

    Google Scholar 

  31. Choi, H., Jung, H., Lee, J., Yoon, J., Park, J., Seong, D., Lee, W., Hasan, M., Jung, G., Hwang, H.: An electrically modifiable synapse array of resistive switching memory. Nanotechnology 20, 345201 (2009)

    Google Scholar 

  32. Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)

    Google Scholar 

  33. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009)

    MATH  MathSciNet  Google Scholar 

  34. Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993)

    Google Scholar 

  35. Crutchfield, J.P.: Between order and chaos. Nat. Phys. 8, 17–24 (2012)

    MathSciNet  Google Scholar 

  36. De Arcangelis, L., Herrmann, H.: Learning as a phenomenon occurring in a critical state. Proc. Natl. Acad. Sci. USA 107, 3977 (2010)

    Google Scholar 

  37. De Arcangelis, L., Perrone-Capano, C., Herrmann, Self-Organized, H.: Criticality model for brain plasticity. Phys. Rev. Lett. 96 (2006)

    Google Scholar 

  38. DeFelipe, J.: From the connectome to the synaptome: an epic love story. Science 330, 1198–1201 (2010)

    Google Scholar 

  39. Diorio, C., Hasler, P., Minch, A., Mead, C.A.: A single-transistor silicon synapse. IEEE Trans. Electron Devices 43, 1972–1980 (1996)

    Google Scholar 

  40. Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of networks. Adv. Phys. 51, 1079–1187 (2002)

    Google Scholar 

  41. Dorogovtsev, S., Goltsev, A., Mendes, J.: Critical phenomena in complex networks. Rev. Mod. Phys. 80, 1275–1335 (2008)

    Google Scholar 

  42. Douglas, R., Koch, C., Mahowald, M., Martin, K., Suarez, H.: Recurrent excitation in neocortical circuits. Science 269, 981–985 (1995)

    Google Scholar 

  43. Eguiluz, V.M., Chialvo, D.R., Cecchi, G.A., Baliki, M., Apkarian, A.V.: Scale-free brain functional networks. Phys. Rev. Lett. 94 (2005)

    Google Scholar 

  44. Fraiman, D., Balenzuela, P., Foss, J., Chialvo, D.: Ising-like dynamics in large-scale functional brain networks. Phys. Rev. E 79 (2009)

    Google Scholar 

  45. Frank, D.J.: Power-constrained CMOS scaling limits. IBM J. Res. Dev. 46, 235–244 (2002)

    Google Scholar 

  46. Freeman, W.J.W., Kozma, R.R., Werbos, P.J.P.: Biocomplexity: adaptive behavior in complex stochastic dynamical systems. Biosystems 59, 109–123 (2001)

    Google Scholar 

  47. Ganguli, S., Huh, D., Sompolinsky, H.: Memory traces in dynamical systems. Proc. Natl. Acad. Sci. USA 105, 18970–18975 (2008)

    Google Scholar 

  48. Gao, J., Buldyrev, S.V., Stanley, H.E., Havlin, S.: Networks formed from interdependent networks. Nat. Phys. 8, 40–48 (2011)

    Google Scholar 

  49. Garlaschelli, D., Capocci, A., Caldarelli, G.: Self-organized network evolution coupled to extremal dynamics. Nat. Phys. 3, 813–817 (2007)

    Google Scholar 

  50. Goldman, M.S.: Memory without feedback in a neural network. Neuron 61, 621–634 (2009)

    Google Scholar 

  51. Goldstein, J.: Emergence as a construct: history and issues. Emergence 1, 49–72 (1999)

    Google Scholar 

  52. Gross, T., Blasius, B.: Adaptive coevolutionary networks: a review. J. R. Soc. Interface 5, 259–271 (2008)

    Google Scholar 

  53. Haimovici, A., Tagliazucchi, E., Balenzuela, P., Chialvo, D.R.: Brain organization into resting state networks emerges at criticality on a model of the human connectome. Phys. Rev. Lett. 110, 178101 (2013)

    Google Scholar 

  54. Haldeman, C., Beggs, J.: Critical branching captures activity in living neural networks and maximizes the number of metastable states. Phys. Rev. Lett. 94, 058101 (2005)

    Google Scholar 

  55. Hasegawa, T., Ohno, T., Terabe, K., Tsuruoka, T., Nakayama, T., Gimzewski, J.K., Aono, Learning, M.: Abilities achieved by a single solid-state atomic switch. Adv. Mater. (2010)

    Google Scholar 

  56. Hasegawa, T., Terabe, K., Tsuruoka, T., Aono, Atomic, M.: Switch: atom/ion movement controlled devices for beyond Von-Neumann computers. Adv. Mater. (2011)

    Google Scholar 

  57. Hassoun, M.H.: Fundamentals of artificial neural networks. Proc. IEEE 84, 906 (1996)

    Google Scholar 

  58. Hopfield, J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79, 2554 (1982)

    MathSciNet  Google Scholar 

  59. Hopfield, J.J.: Artificial neural networks. IEEE Circuits Devices Mag. 4, 3–10 (1988)

    Google Scholar 

  60. Husband, C., Husband, S., Daniels, J., Tour, J.: Logic and memory with nanocell circuits. IEEE Trans. Electron Devices 50, 1865–1875 (2003)

    Google Scholar 

  61. Indiveri, G., Chicca, E., Douglas, R.J.: Artificial cognitive systems: from VLSI networks of spiking neurons to neuromorphic cognition. Cogn. Comput. 1, 119–127 (2009)

    Google Scholar 

  62. Indiveri, G.G., Linares-Barranco, B.B., Hamilton, T.J.T., van Schaik, A.A., Etienne-Cummings, R.R., Delbruck, T.T., Liu, S.-C.S., Dudek, P.P., Häfliger, P.P., Renaud, S.S., et al.: Neuromorphic silicon neuron circuits. Front. Neurosci. 5, 73 (2011)

    Google Scholar 

  63. International Technology Roadmap for Semiconductors (2003)

    Google Scholar 

  64. Jaeger, H.: The “Echo State” approach to analysing and training recurrent neural networks-with an erratum note’. Technology GMD Technical Report, 148, German National Research Center for Information, Bonn, Germany (2001)

    Google Scholar 

  65. Jaeger, H.: Adaptive nonlinear system identification with echo state networks. Networks 8, 9 (2003)

    Google Scholar 

  66. Jensen, H.J., Self-organized criticality: emergent complex behavior in physical and biological systems 10 (1998)

    Google Scholar 

  67. Jeong, D.S., Kim, I., Ziegler, M., Kohlstedt, H.: Towards artificial neurons and synapses: materials point of view. RSC Adv. (2012)

    Google Scholar 

  68. Joglekar, Y.N., Wolf, S.J.: The elusive memristor: properties of basic electrical circuits. arXiv 2008, cond-mat.mes-hall

    Google Scholar 

  69. Johansen-Berg, H.: Human connectomics—what will the future demand? NeuroImage 1–5 (2013)

    Google Scholar 

  70. Kelso, J.A.S.: Dynamic Patterns. MIT Press, Cambridge (1997)

    Google Scholar 

  71. Kim, K.-H., Gaba, S., Wheeler, D., Cruz-Albrecht, J.M., Hussain, T., Srinivasa, N., Lu, W.: A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. Nano Lett. 12, 389–395 (2012)

    Google Scholar 

  72. Kitzbichler, M.G., Smith, M.L., Christensen, S.R., Bullmore, E.: Broadband criticality of human brain network synchronization. PLoS Comput. Biol. 5, e1000314 (2009)

    MathSciNet  Google Scholar 

  73. Kozma, R., Puljic, M., Balister, P., Bollobás, B., Freeman, W.J.: Phase transitions in the neuropercolation model of neural populations with mixed local and non-local interactions. Biol. Cybern. 92, 367–379 (2005)

    MATH  Google Scholar 

  74. Kuzum, D., Jeyasingh, R.G.D., Lee, B., Wong, H.-S.P.: Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett. 12, 2179–2186 (2012)

    Google Scholar 

  75. Kuzum, D., Jeyasingh, R.G.D., Yu, S., Wong, H.-S.: Low-energy robust neuromorphic computation using synaptic devices (2012)

    Google Scholar 

  76. Langton, C.: Computation at the edge of chaos—phase-transitions and emergent computation. Physica D 42, 12–37 (1990)

    MathSciNet  Google Scholar 

  77. Lazar, A.: SORN: a self-organizing recurrent neural network. Front. Comput. Neurosci. 3 (2009)

    Google Scholar 

  78. Legenstein, R., Maass, W.: Edge of chaos and prediction of computational performance for neural circuit models. Neural Netw. 20, 323–334 (2007)

    MATH  Google Scholar 

  79. Likharev, K., Strukov, D.C.MO.L.: Devices, circuits, and architectures. Introd. Mol. Electron. 447–477 (2005)

    Google Scholar 

  80. Likharev, K., Mayr, A., Muckra, I., Türel, Ö.: CrossNets: high-performance neuromorphic architectures for CMOL circuits. Ann. N.Y. Acad. Sci. 1006, 146–163 (2003)

    Google Scholar 

  81. Linkenkaer-Hansen, K., Nikouline, V.V., Palva, J.M., Ilmoniemi, R.J.: Long-range temporal correlations and scaling behavior in human brain oscillations. J. Neurosci. 21, 1370–1377 (2001)

    Google Scholar 

  82. Lu, W., Lieber, C.M.: Nanoelectronics from the bottom up. Nat. Mater. 6, 841–850 (2007)

    Google Scholar 

  83. Lukosevicius, J.: Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 3, 23 (2009)

    Google Scholar 

  84. Lukosevicius, M., Jaeger, H., Schrauwen, B.: Reservoir computing trends. Künstl. Intell. 1–7 (2012)

    Google Scholar 

  85. Lundstrom, M.: Applied physics: enhanced: Moore’s law forever? Science 299, 210–211 (2003)

    Google Scholar 

  86. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14, 2531–2560 (2002)

    MATH  Google Scholar 

  87. Mahowald, M., Douglas, R.: A silicon neuron. Nature 354, 515–518 (1991)

    Google Scholar 

  88. Marconi, E., Nieus, T., Maccione, A., Valente, P., Simi, A., Messa, M., Dante, S., Baldelli, P., Berdondini, L., Benfenati, F.: Emergent functional properties of neuronal networks with controlled topology. PLoS ONE 7, e34648 (2012)

    Google Scholar 

  89. Markram, H.: The human brain project. Sci. Am. 306, 50–55 (2012)

    Google Scholar 

  90. McCulloch, W., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biol. 5, 115–133 (1943)

    MATH  MathSciNet  Google Scholar 

  91. Mead, C.: Neuromorphic electronic systems. Proc. IEEE 78, 1629–1636 (1990)

    Google Scholar 

  92. Meunier, Hierarchical, D.: Modularity in human brain functional networks. Front. Neuroinform. 3 (2009)

    Google Scholar 

  93. Modha, D.S.D., Singh, R.R.: Network architecture of the long-distance pathways in the macaque brain. Proc. Natl. Acad. Sci. USA 107, 13485–13490 (2010)

    Google Scholar 

  94. Morgan, J.L., Lichtman, J.W.: Why not connectomics? Nat. Chem. Biol. 10, 494–500 (2013)

    Google Scholar 

  95. Nayak, A., Ohno, T., Tsuruoka, T., Terabe, K., Hasegawa, T., Gimzewski, J.K., Aono, M.: Controlling the synaptic plasticity of a Cu2S gap-type atomic switch. Adv. Funct. Mater. (2012)

    Google Scholar 

  96. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)

    MATH  MathSciNet  Google Scholar 

  97. Ohno, T.: Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 10, 591–595 (2011)

    Google Scholar 

  98. Ohno, T., Hasegawa, T., Nayak, A., Tsuruoka, T., Gimzewski, J.K., Aono, M.: Sensory and short-term memory formations observed in a Ag2S gap-type atomic switch. Appl. Phys. Lett. 99, 203108 (2011)

    Google Scholar 

  99. Oskoee, N., Sahimi, M.: Electric currents in networks of interconnected memristors. Phys. Rev. E 83, 031105 (2011)

    Google Scholar 

  100. Paquot, Y., Duport, F., Smerieri, A., Dambre, J., Schrauwen, B., Haelterman, M., Massar, S.: Optoelectronic reservoir computing. Sci. Rep., 2 (2012)

    Google Scholar 

  101. Pask, G.: Physical analogues to the growth of a concept. In: Proceedings of a Symposium Held at the National Physical Laboratory on Mechanisation of Thought Processes, p. 2 (1958)

    Google Scholar 

  102. Pickett, M.D., Medeiros-Ribeiro, G., Williams, R.S.: A scalable neuristor built with Mott memristors. Nat. Mater. 12, 114–117 (2012)

    Google Scholar 

  103. Plenz, D.: The critical brain. Physics 6(47), 1–3 (2013)

    Google Scholar 

  104. Poon, C.-S.: Neuromorphic silicon neurons and large-scale neural networks: challenges and opportunities 1–3 (2011)

    Google Scholar 

  105. Prodromakis, T., Toumazou, C., Chua, L.: Centuries of memristors. Nat. Mater. 11, 478–481 (2012)

    Google Scholar 

  106. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65, 386 (1958)

    MathSciNet  Google Scholar 

  107. Ryle, G.: The Concept of Mind. University of Chicago Press, Chicago (1949)

    Google Scholar 

  108. Schemmel, J., Bruderle, D., Grubl, A., Hock, M., Meier, K., Millner, S.: A wafer-scale neuromorphic hardware system for large-scale neural modeling 1947–1950 (2010)

    Google Scholar 

  109. Schrauwen, B., Verstraeten, D., Van Campenhout, J.: An overview of reservoir computing: theory, applications and implementations. In: Proceedings of the 15th European Symposium on Artificial Neural Networks, pp. 471–482 (2007)

    Google Scholar 

  110. Seo, K., Kim, I., Jung, S., Jo, M., Park, S., Park, J., Shin, J., Biju, K.P., Kong, J., Lee, K., et al.: Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device. Nanotechnology 22, 254023 (2011)

    Google Scholar 

  111. Sillin, H.O., Aguilera, R., Shieh, H.H., Avizienis, A.V., Aono, M., Stieg, A.Z., Gimzewski, J.K.: A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing. Nanotechnology 38(24), 384004 (2013)

    Google Scholar 

  112. Sillin, H.O., Sandouk, E.J., Avizienis, A.V., Aono, M., Stieg, A.Z., Gimzewski, J.K.: Benchtop fabrication of memristive atomic switch networks. J. Nanosci. Nanotechnol. 24, 1–7 (2013)

    Google Scholar 

  113. Simon, H.: The architecture of complexity. Proc. Am. Philos. Soc. 467–482 (1962)

    Google Scholar 

  114. Song, C., Havlin, S., Makse, H.A.: Self-similarity of complex networks. Nature 433, 392–395 (2005)

    Google Scholar 

  115. Sporns, O.: Small-world connectivity, motif composition, and complexity of fractal neuronal connections. Biosystems 85, 55–64 (2006)

    Google Scholar 

  116. Sporns, O., Tononi, G., Edelman, G.: Connectivity and complexity: the relationship between neuroanatomy and brain dynamics. Neural Netw. 13, 909–922 (2000)

    Google Scholar 

  117. Sporns, O., Chialvo, D., Kaiser, M., Hilgetag, C.: Organization development and function of complex brain networks. Trends Cogn. Sci. 8, 418–425 (2004)

    Google Scholar 

  118. Sporns, O., Tononi, G., Kötter, R.: The human connectome: a structural description of the human brain. PLoS Comput. Biol. 1, e42 (2005)

    Google Scholar 

  119. Srinivasa, N.N., Cruz-Albrecht, J.J.: Neuromorphic adaptive plastic scalable electronics: analog learning systems. IEEE Pulse 3, 51–56 (2012)

    Google Scholar 

  120. Stanley, H.E.: Introduction to Phase Transitions and Critical Phenomena (1987)

    Google Scholar 

  121. Steil, J.J.: Backpropagation-decorrelation: online recurrent learning with O(N) complexity. In: Proceedings IEEE International Joint Conference on Neural Networks, vol. 2, pp. 843 (2004)

    Google Scholar 

  122. Stieg, A.Z., Avizienis, A.V., Sillin, H.O., Martin-Olmos, C., Aono, M., Gimzewski, J.K.: Emergent criticality in complex turing B-type atomic switch networks. Adv. Mater. 24, 286–293 (2011)

    Google Scholar 

  123. Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001)

    Google Scholar 

  124. Strukov, D.B., Likharev, K.K.: CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices. Nanotechnology 16, 888–900 (2005)

    Google Scholar 

  125. Strukov, D., Snider, G., Stewart, D., Williams, R.: The missing memristor found. Nature 453, 80–83 (2008)

    Google Scholar 

  126. Stumpf, M.P.H., Porter, M.A.: Critical truths about power laws. Science 335, 665–666 (2012)

    MathSciNet  Google Scholar 

  127. Terabe, K., Hasegawa, T., Nakayama, T., Aono, M.: Quantized conductance atomic switch. Nature 433, 47–50 (2005)

    Google Scholar 

  128. Tononi, G.: Consciousness and complexity. Science 282, 1846–1851 (1998)

    Google Scholar 

  129. Tononi, G., Sporns, O., Edelman, G.: A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc. Natl. Acad. Sci. USA 91, 5033 (1994)

    Google Scholar 

  130. Tononi, G., Edelman, G.M., Sporns, O.: Complexity and coherency: integrating information in the brain. Trends Cogn. Sci. 2, 474–484 (1998)

    Google Scholar 

  131. Tour, J., Van Zandt, W., Husband, C., Husband, S., Wilson, L., Franzon, P., Nackashi, D.: Nanocell logic gates for molecular computing. IEEE Trans. Nanotechnol. 1, 100–109 (2002)

    Google Scholar 

  132. Turcotte, D.L.S.-O.: Self-organized criticality. Rep. Prog. Phys. 62, 1377–1429 (1999)

    Google Scholar 

  133. Türel, Ö., Lee, J.H., Ma, X., Likharev, K.K.: Neuromorphic architectures for nanoelectronic circuits. Int. J. Circuit Theory Appl. 32, 277–302 (2004)

    Google Scholar 

  134. Turing, A.M.: Computing machinery and intelligence. Mind 59, 433 (1950)

    MathSciNet  Google Scholar 

  135. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond., Part B 237, 37–72 (1953)

    Google Scholar 

  136. van den Heuvel, M.P., Stam, C.J., Kahn, R.S., Hulshoff Pol, H.E.: Efficiency of functional brain networks and intellectual performance. J. Neurosci. 29, 7619–7624 (2009)

    Google Scholar 

  137. Versace, M., Chandler, B.: The brain of a new machine. IEEE Spectr. 47, 30–37 (2010)

    Google Scholar 

  138. Verschure, P.: Connectionist explanation: taking positions in the mind-brain dilemma. In: Neural Networks and a New Artificial Intelligence, pp. 133–188 (1997)

    Google Scholar 

  139. Verstraeten, D., Schrauwen, B., D’Haene, M., Stroobandt, D.: Special issue: an experimental unification of reservoir computing methods. Neural Netw. 20, 391–403 (2007)

    MATH  Google Scholar 

  140. Von Neumann, J.: The principles of large-scale computing machines. IEEE Ann. Hist. Comput. 3, 263–273 (1981)

    MATH  Google Scholar 

  141. Von Neumann, J.: The Computer and the Brain. Yale University Press, New Haven (2012)

    Google Scholar 

  142. Wang, X., Chen, G.: Complex networks: small-world, scale-free and beyond. IEEE Circuits Syst. Mag. 3, 6–20 (2003)

    Google Scholar 

  143. Waser, R., Aono, M.: Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007)

    Google Scholar 

  144. Watts, D.J., Strogatz, S.H.: Collective dynamics of “Small-World” networks. Nature 393, 440–442 (1998)

    Google Scholar 

  145. Werner, G.: Metastability, criticality and phase transitions in brain and its models. Biosystems 90, 496–508 (2007)

    Google Scholar 

  146. Werner, G.: Viewing brain processes as critical state transitions across levels of organization: neural events in cognition and consciousness, and general principles. Biosystems 96, 114–119 (2009)

    Google Scholar 

  147. Wiener, N.: Cybernetics, Second Edition: or the Control and Communication in the Animal and the Machine (1965)

    Google Scholar 

  148. Williams, R.J., Zipser, D.: A learning algorithm for continually running fully recurrent neural networks. Neural Comput. 1, 270–280 (1989)

    Google Scholar 

  149. Xu, Z., Bando, Y., Wang, W., Bai, X., Golberg, D.: Real-time in situ HRTEM-resolved resistance switching of Ag2S nanoscale ionic conductor. ACS Nano 4, 2515–2522 (2010)

    Google Scholar 

  150. Yang, J.J., Pickett, M.D., Li, X., Ohlberg, D.A.A., Stewart, D.R., Williams, R.S.: Memristive switching mechanism for Metal/Oxide/Metal nanodevices. Nat. Nanotechnol. 3, 429–433 (2008)

    Google Scholar 

  151. Yang, J.J., Strukov, D.B., Stewart, D.R.: Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013)

    Google Scholar 

  152. Yegnanarayana, B.: Artificial Neural Networks (2004)

    Google Scholar 

  153. Zhao, W.S., Agnus, G., Derycke, V., Filoramo, A., Bourgoin, J.-P., Gamrat, C.: Nanotube devices based crossbar architecture: toward neuromorphic computing. Nanotechnology 21, 175202 (2010)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), HRL Laboratories, and the Defense Advanced Research Projects Agency (DARPA)—Physical Intelligence Program (BAA-09-63), US Department of Defense. The authors acknowledge use of the Nanoelectronics Research Facility (NRF) and Nano and Pico Characterization Laboratory (NPC) at the University of California, Los Angeles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Z. Stieg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stieg, A.Z. et al. (2014). Self-organization and Emergence of Dynamical Structures in Neuromorphic Atomic Switch Networks. In: Adamatzky, A., Chua, L. (eds) Memristor Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-02630-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02630-5_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02629-9

  • Online ISBN: 978-3-319-02630-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics