Skip to main content

Discriminative Group Sparse Representation for Mild Cognitive Impairment Classification

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8184))

Abstract

Witnessed by recent studies, functional connectivity is a useful tool in extracting brain network features and finding biomarkers for brain disease diagnosis. It still remains, however, challenging for the estimation of a functional connectivity from fMRI due to the high dimensional nature. In order to tackle this problem, we utilize a group sparse representation along with a structural equation model. Unlike the conventional group sparse representation, we devise a novel supervised discriminative group sparse representation by penalizing a large within-class variance and a small between-class variance of features. Thanks to the devised penalization term, we can learn connectivity coefficients that are similar within the same class and distinct between classes, thus helping enhance the diagnostic accuracy. In our experiments on the resting-state fMRI data of 37 subjects (12 mild cognitive impairment patients; 25 healthy normal controls) with a cross-validation technique, we demonstrated the validity and effectiveness of the proposed method, showing the best diagnostic accuracy of 89.19% and the sensitivity of 0.9167.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Friston, K.J., Frith, C.D., Liddle, P.F., Frackowiak, R.S.: Functional connectivity: The principal-component analysis of large (PET) data sets. Journal of Cerebral Blood Flow and Metabolism 13, 5–14 (1993)

    Article  Google Scholar 

  2. Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press Professional (1990)

    Google Scholar 

  3. Han, S.D., Arfanakis, K., Fleischman, D.A., Leurgans, S.E., Tuminello, E.R., Edmonds, E.C., Bennett, D.A.: Functional connectivity variations in mild cognitive impairment: associations with cognitive function. Journal of the International Neuropsychological Society 18, 39–48 (2012)

    Article  Google Scholar 

  4. Liu, J., Ji, S., Ye, J.: SLEP: Sparse Learning with Efficient Projections. Arizona State University (2009)

    Google Scholar 

  5. Mcintosh, A.R., Grady, C.L., Ungerleider, L.G., Haxby, J.V., Rapoport, S.I., Horwitzl, B.: Network analysis of cortical visual pathways mapped with PET. Journal of Neuroscience 14, 655–666 (1994)

    Google Scholar 

  6. Misra, C., Fan, Y., Davatzikos, C.: Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI. NeuroImage 44, 1414–1422 (2009)

    Article  Google Scholar 

  7. Ng, B., Varoquaux, G., Poline, J.-B., Thirion, B.: A novel sparse graphical approach for multimodal brain connectivity inference. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 707–714. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(8), 1226–1285 (2005)

    Article  Google Scholar 

  9. Rakotomamonjy, A.: Variable selection using SVM based criteria. Journal of Machine Learning Research 3, 1357–1370 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Supekar, K., Menon, V., Rubin, D., Musen, M., Greicius, M.D.: Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Computational Biology 4, e1000100 (2008)

    Google Scholar 

  11. Thomann, P.A., Schläfer, C., Seidl, U., Santos, V.D., Essig, M., Schröder, J.: The cerebellum in mild cognitive impairment and Alzheimer’s disease - a structural MRI study. Journal of Psychiatric Research 42(14), 1198–1202 (2008)

    Article  Google Scholar 

  12. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15(1), 273–289 (2002)

    Article  Google Scholar 

  13. Van Dijk, K.R.A., Hedden, T., Venkataraman, A., Evans, K.C., Lazar, S.W., Buckner, R.L.: Intrinsic functional connectivity as a tool for human connectomics: Theory, properties and optimization. Journal of Neurophysiology 103, 297–321 (2010)

    Article  Google Scholar 

  14. Wang, Z., Nie, B., Li, D., Zhao, Z., Han, Y.: Effect of acupuncture in mild cognitive impairment and Alzheimer Disease: a functional MRI study. PLoS ONE 7(8), e42730 (2012)

    Google Scholar 

  15. Wee, C.-Y., Yap, P.-T., Zhang, D., Wang, L., Shen, D.: Constrained sparse functional connectivity networks for MCI classification. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part II. LNCS, vol. 7511, pp. 212–219. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society Series B 68(1), 49–67 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Suk, HI., Wee, CY., Shen, D. (2013). Discriminative Group Sparse Representation for Mild Cognitive Impairment Classification. In: Wu, G., Zhang, D., Shen, D., Yan, P., Suzuki, K., Wang, F. (eds) Machine Learning in Medical Imaging. MLMI 2013. Lecture Notes in Computer Science, vol 8184. Springer, Cham. https://doi.org/10.1007/978-3-319-02267-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02267-3_17

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02266-6

  • Online ISBN: 978-3-319-02267-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics