Skip to main content

Nonlinear Analysis of Phase-locked Loop-Based Circuits

  • Chapter
  • First Online:
Discontinuity and Complexity in Nonlinear Physical Systems

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 6))

Abstract

Main problems of simulation and mathematical modeling of high-frequency signals for analog Costas loop and for analog phase-locked loop (PLL) are considered. Two approachers which allow to solve these problems are considered. In the first approach, nonlinear models of classical PLL and classical Costas loop are considered. In the second approach, engineering solutions for this problems are described. Nonlinear differential equations are derived for both approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The functions with a finite number of jump discontinuity points differentiable on their continuity intervals

References

  1. Abramovitch D (2002) Phase-locked loops: a control centric tutorial. Proc Am Control Conf 1:1–15

    Google Scholar 

  2. Abramovitch D (2008) Efficient and flexible simulation of phase locked loops, part I: simulator design. In: American control conference, Seattle, pp 4672–4677

    Google Scholar 

  3. Abramovitch D (2008) Efficient and flexible simulation of phase locked loops, part II: post processing and a design example. In: American control conference, Seattle, pp 4678–4683

    Google Scholar 

  4. Banerjee T, Sarkar B (2008) Chaos and bifurcation in a third-order digital phase-locked loop. Int J Electron Commun 62:86–91

    Article  Google Scholar 

  5. Bellescize H (1932) La réception synchrone. L’onde Électrique 11:230–340

    Google Scholar 

  6. Best RE (2007) Phase-lock loops: design, simulation and application. McGraw-Hill, New York

    Google Scholar 

  7. Demir A, Mehrotra A, Roychowdhury J (2000) Phase noise in oscillators: a unifying theory and numerical methods for characterization. IEEE Trans Circuits Syst I 47:655–674

    Article  Google Scholar 

  8. Emura T (1982) A study of a servomechanism for nc machines using 90 degrees phase difference method. Progress Report of JSPE, pp 419–421

    Google Scholar 

  9. Feely O (2007) Nonlinear dynamics of discrete-time circuits: a survey. Int J Circuit Theory Appl 35:515–531

    Article  MATH  Google Scholar 

  10. Feely O, Curran PF, Bi C (2012) Dynamics of charge-pump phase-locked loops. Int J Circuit Theory Appl 27. doi:10.1002/cta.1814

    Google Scholar 

  11. Gardner F (1966) Phase–lock techniques. Wiley, New York

    Google Scholar 

  12. Gardner F (1993) Interpolation in digital modems - part i: fundamentals. IEEE Electron Commun Eng J 41(3):501–507

    MATH  Google Scholar 

  13. Gardner F, Erup L, Harris R (1993) Interpolation in digital modems - part ii: implementation and performance. IEEE Electron Commun Eng J 41(6):998–1008

    Google Scholar 

  14. Kroupa V (2003) Phase lock loops and frequency synthesis. Wiley, New York

    Book  Google Scholar 

  15. Krylov N, Bogolyubov N (1947) Introduction to non-linear mechanics. Princeton University Press, Princeton

    Google Scholar 

  16. Kudrewicz J, Wasowicz S (2007) Equations of phase-locked loops: dynamics on the circle, torus and cylinder, A, vol 59. World Scientific, Singapore

    Google Scholar 

  17. Kuznetsov NV, Leonov GA, Seledzhi SS (2008) Phase locked loops design and analysis. In: Proceedings of ICINCO 2008 - 5th international conference on informatics in control, automation and robotics, vol SPSMC, pp 114–118. doi:10.5220/0001485401140118

    Google Scholar 

  18. Kuznetsov NV, Leonov GA, Seledzhi SM (2009) Nonlinear analysis of the Costas loop and phase-locked loop with squarer. In: Proceedings of the IASTED international conference on signal and image processing, SIP 2009, pp 1–7

    Google Scholar 

  19. Kuznetsov NV, Leonov GA, Seledzhi SM, Neittaanmäki P (2009) Analysis and design of computer architecture circuits with controllable delay line. In: Proceedings of ICINCO 2009 - 6th international conference on informatics in control, automation and robotics, vol 3 SPSMC, pp 221–224. doi:10.5220/0002205002210224

    Google Scholar 

  20. Kuznetsov NV, Leonov GA, Neittaanmäki P, Seledzhi SM, Yuldashev MV, Yuldashev RV (2010) Nonlinear analysis of phase-locked loop. In: IFAC proceedings volumes (IFAC-PapersOnline), vol 4(1), pp 34–38. doi:10.3182/20100826-3-TR-4016.00010

    Google Scholar 

  21. Kuznetsov NV, Leonov GA, Seledzhi SM, Yuldashev MV, Yuldashev RV (2011) Method for determining the operating parameters of phase-locked oscillator frequency and device for its implementation. Patent RU2449463 C1

    Google Scholar 

  22. Kuznetsov NV, Neittaanmäki P, Leonov GA, Seledzhi SM, Yuldashev MV, Yuldashev RV (2011) High-frequency analysis of phase-locked loop and phase detector characteristic computation. In: ICINCO 2011 - proceedings of the 8th international conference on informatics in control, automation and robotics vol 1, pp 272–278. doi:10.5220/0003522502720278

    Google Scholar 

  23. Kuznetsov NV, Leonov GA, Neittaanmäki P, Seledzhi S, Yuldashev MV, Yuldashev RV (2012) Simulation of phase-locked loops in phase-frequency domain. In: International congress on ultra modern telecommunications and control systems, IEEE Press, pp 364–368

    Google Scholar 

  24. Kuznetsov NV, Leonov GA, Yuldashev MV, Yuldashev RV (2012) Nonlinear analysis of Costas loop circuit. In: ICINCO 2012 - proceedings of the 9th international conference on informatics in control, automation and robotics 1:557–560. doi10.5220/0003976705570560

    Google Scholar 

  25. Leonov GA (2006) Phase-locked loops. Theory and application. Autom Remote Control 10:47–55

    Google Scholar 

  26. Leonov GA (2008) Computation of phase detector characteristics in phase-locked loops for clock synchronization. Dokl Math 78(1):643–645

    Article  MathSciNet  MATH  Google Scholar 

  27. Leonov GA, Kuznetsov NV, Seledzhi SM (2006) Analysis of phase-locked systems with discontinuous characteristics. In: IFAC proceedings volumes (IFAC-PapersOnline), vol 1, pp 107–112. doi10.3182/20060628-3-FR-3903.00021

    Google Scholar 

  28. Leonov GA, Kuznetsov NV, Seledzhi SM (2009) Nonlinear analysis and design of phase-locked loops. In: Automation control - theory and practice. In-Tech, New York, pp 89–114. doi:10.5772/7900

    Google Scholar 

  29. Leonov GA, Kuznetsov NV, Yuldahsev MV, Yuldashev RV (2011) Computation of phase detector characteristics in synchronization systems. Dokl Math 84(1):586–590. doi:10.1134/S1064562411040223

    Article  MathSciNet  MATH  Google Scholar 

  30. Leonov GA, Kuznetsov NV, Yuldahsev MV, Yuldashev RV (2012) Analytical method for computation of phase-detector characteristic. IEEE Trans Circuits Syst II Express Briefs 59(10):633–647. doi:10.1109/TCSII.2012.2213362

    Article  Google Scholar 

  31. Leonov GA, Kuznetsov NV, Yuldashev MV, Yuldashev RV (2012) Differential equations of Costas loop. Dokl Math 86(2):723–728. doi:10.1134/S1064562412050080

    Article  MathSciNet  MATH  Google Scholar 

  32. Lindsey W (1972) Synchronization systems in communication and control. Prentice-Hall, New Jersey

    Google Scholar 

  33. Lindsey W, Simon M (1973) Telecommunication systems engineering. Prentice Hall, New Jersey

    Google Scholar 

  34. Margaris W (2004) Theory of the non-linear analog phase locked loop. Springer, New Jersey

    Book  MATH  Google Scholar 

  35. Stiffler JP (1964) Bit and subcarrier synchronization in a binary psk communication system Natl Telemetering Conf

    Google Scholar 

  36. Suarez A, Quere R (2003) Stability analysis of nonlinear microwave circuits. Artech House, New Jersey

    Google Scholar 

  37. Suarez A, Fernandez E, Ramirez F, Sancho S (2012) Stability and bifurcation analysis of self-oscillating quasi-periodic regimes. IEEE Trans Microw Theory Tech 60(3):528–541

    Article  Google Scholar 

  38. Thede L (2005) Practical analog and digital filter design. Artech House, New Jersey

    Google Scholar 

  39. Tretter SA (2007) Communication system design using DSP algorithms with laboratory experiments for the TMS320C6713TM DSK. Springer, New York

    Google Scholar 

  40. Viterbi A (1966) Principles of coherent communications. McGraw-Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Kuznetsov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Best, R.E., Kuznetsov, N.V., Leonov, G.A., Yuldashev, M.V., Yuldashev, R.V. (2014). Nonlinear Analysis of Phase-locked Loop-Based Circuits. In: Machado, J., Baleanu, D., Luo, A. (eds) Discontinuity and Complexity in Nonlinear Physical Systems. Nonlinear Systems and Complexity, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-01411-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01411-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01410-4

  • Online ISBN: 978-3-319-01411-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics