Skip to main content

A Decentralized Heuristic for Multiple-Choice Combinatorial Optimization Problems

  • Conference paper
  • First Online:

Part of the book series: Operations Research Proceedings ((ORP))

Abstract

We present a decentralized heuristic applicable to multi-agent systems (MAS), which is able to solve multiple-choice combinatorial optimization problems (MC-COP). First, the MC-COP problem class is introduced and subsequently a mapping to MAS is shown, in which each class of elements in MC-COP corresponds to a single agent in MAS. The proposed heuristic “COHDA” is described in detail, including evaluation results from the domain of decentralized energy management systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Han, B., Leblet, J., Simon, G.: Hard multidimensional multiple choice knapsack problems, an empirical study. Computers & Operations Research 37(1), 172–181 (2010). doi:10.1016/j.cor.2009.04.006

    Article  Google Scholar 

  2. Hinrichs, C., Vogel, U., Sonnenschein, M.: Approaching Decentralized Demand Side Management via Self-Organizing Agents. In: Yolum, Tumer, Stone, Sonenberg (eds.) ATES Workshop, Proc. of 10th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2011). Taipei, Taiwan (2011).

    Google Scholar 

  3. Lust, T., Teghem, J.: The multiobjective multidimensional knapsack problem: a survey and a new approach. International Transactions in Operational Research 19(4), 495–520 (2012). doi:10.1111/j.1475-3995.2011.00840.x

  4. Martello, S., Toth, P.: Knapsack problems, 1 edn. John Wiley & Sons (1990).

    Google Scholar 

  5. Padhy, N.: Unit Commitment-A Bibliographical Survey. IEEE Transactions on Power Systems 19(2), 1196–1205 (2004). doi:10.1109/TPWRS.2003.821611

    Article  Google Scholar 

  6. Pisinger, D.: A minimal algorithm for the multiple-choice knapsack problem. European Journal of Operational Research 83(2), 394–410 (1995).doi:10.1016/0377-2217(95)00015-I

    Google Scholar 

  7. Pisinger, D.: Linear Time Algorithms for Knapsack Problems with Bounded Weights. Journal of Algorithms 33(1), 1–14 (1999). doi:10.1006/jagm.1999.1034

    Google Scholar 

  8. Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268–276 (2001). doi:10.1038/35065725

    Article  Google Scholar 

  9. Talbi, E.G.: Metaheuristics. John Wiley & Sons, Inc., Hoboken, NJ, USA (2009). 10.1002/9780470496916.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Hinrichs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Hinrichs, C., Lehnhoff, S., Sonnenschein, M. (2014). A Decentralized Heuristic for Multiple-Choice Combinatorial Optimization Problems. In: Helber, S., et al. Operations Research Proceedings 2012. Operations Research Proceedings. Springer, Cham. https://doi.org/10.1007/978-3-319-00795-3_43

Download citation

Publish with us

Policies and ethics