[AM]

N. Alon, V.D. Milman, Eigenvalues, expanders and superconcentrators, Proc. 25th Annual FOCS, Singer Island, FL, IEEE, New York (1984), 320–322.

[BW]

R.P. Bambah,

A.C. Woods, On a problem of Danzer, Pacific J. Math. 37 (1971), 295–301.

MATHMathSciNet [B]

F.A. Behrend, On sets of integers which contain no three in arithmetic progression, Proc. Nat. Acad. Sci. 23 (1946), 331–332.

CrossRefMathSciNet [Bi]

Y. Bilu, Structure of sets with small sumset, Astéerisque 258 (1999), 77–108.

MathSciNet [Bol]

J. Bourgain, Remarks on Montgomery’s conjectures on Dirichlet series, Geometric Aspects of Functional Analysis (1989–1990), Springer Lecture Notes in Mathematics 1469 (1991), 153–165.

[Bo2]

J. Bourgain, Besicovitch type maximal operators and applications to Fourier analysis, GAFA 1 (1991), 147–187.

CrossRefMATHMathSciNet [Bo3]

J. Bourgain, On triples in arithmetic progression, GAFA 9:5 (1999), 968–984.

CrossRefMATHMathSciNet [Bo4]

J. Bourgain, On the dimension of Kakeya sets and related maximal in-equalities, GAFA 9:2 (1999), 256–282.

CrossRefMATHMathSciNet [Bu]

George BUSH, Interview, Time, 26th Jan. 1987.

[CG]

F.R.K. Chung,

R.L. GRAHAM, Quasi-random subsets of ℤ

_{n}, J. Comb. Th. A 61 (1992), 64–86.

CrossRefMATHMathSciNet [CGW]

F.R.K. Chung,

R.L. Graham,

R.M. Wilson, Quasi-random graphs, Combinatorica 9 (1989), 345–362.

CrossRefMATHMathSciNet [Co]

S.A. Cook, The complexity of theorem proving procedures, Proc. 3rd Annual ACM Symposium on the Theory of Computing (1971), 151–158.

[D]

A. Dvoretzky, Some results on convex bodies and Banach spaces, Proc. Symp. on Linear Spaces, Jerusalem (1961), 123–160.

[E]

P. Erdős, Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947), 292–294.

CrossRefMathSciNet [ET]

P. Erdős, P. Turán, On some sequences of integers, J. London Math. Soc. 11 (1936), 261–264.

CrossRef [F]

C. Fefferman, The multiplier problem for the ball, Annals of Math. 94 (1971), 330–336.

CrossRefMathSciNet [FuK]

H. Furstenberg,

Y. Katznelson, A density version of the Hales-Jewett theorem, J. D’Analyse Math. 57 (1991), 64–119.

MATHMathSciNet [Frl]

G.A. Freiman, Foundations of a Structural Theory of Set Addition (in Russian), Kazan Gos. Ped. Inst., Kazan 1966.

[Fr2]

G.A. Freiman, Foundations of a Structural Theory of Set Addition, Translations of Mathematical Monographs 37, Amer. Math. Soc, Providence, R.I.,USA, 1973.

[Gl]

W.T. Gowers, Lower bounds of tower type for Szemerédi’s uniformity lemma, GAFA 7 (1997), 322–337.

CrossRefMATHMathSciNet [G2]

W.T. Gowers, A new proof of Szemerédi’s theorem for arithmetic progressions of length four, GAFA 8 (1998), 529–551.

CrossRefMATHMathSciNet [GrRR]

R.L. Graham, V. Rödl, A. Rucinski, On graphs with linear Ramsey numbers, preprint.

[H]

W. Haken, Theorie der Normalflächen, ein Isotopiekriterium für den Kreisnoten, Acta Math. 105, 245–375.

[HaW]

J.M. Hammersley, D.J.A. Welsh, Further results on the rate of convergence to the connective constant of the hypercubical lattice, Quart. J. Math. Oxford Ser. (2) 13 (1962), 108–110.

[HarSl]

T. Hará,

G. Slade, Self-avoiding walk in five or more dimensions, Comm. Math. Phys. 147 (1992), 101–136.

CrossRefMATHMathSciNet [HarS2]

T. Hará,

G. Slade, The lace expansion for self-avoiding walk in five or more dimensions, Rev. Math. Phys. 4 (1992), 235–327.

CrossRefMATHMathSciNet [He]

D.R. Heath-Brown, Integer sets containing no arithmetic progressions, J. London Math. Soc. (2) 35 (1987), 385–394.

[K]

R.M. Karp, Reducibility among combinatorial problems, Complexity of Computer Computations, Proc. Sympos., IBM Thomas J. Watson Res. Centr, Yorktown Heights, N.Y., 1972, (R.E. Miller, J.W. Thatcher, eds.) Plenum Press, New York 1972, 85–103.

[KaLT]

N.H. Katz, I. Laba, T. Tao, An improved bound on the Minkowski dimension of Besicovitch sets in ℝ^{3}, Annals of Math., to appear.

[KaT]

N.H. Katz, T. Tao, A new bound on partial sum-sets and difference-sets, and applications to the Kakeya conjecture, submitted.

[KoS]

J. Komlós, M. Simonovits, Szemerédi’s Regularity Lemma and its applications in Graph Theory, in “Combinatorics, Paul Erdős is 80 (Vol 2)”, Bolyai Society Math. Studies 2, 295–352, Kesthely (Hungary) 1993, Budapest 1996.

[LPS]

A. Lubotzky, R. Phillips, P. Sarnak, Explicit expanders and the Ramanujan conjectures, Proceedings of the 18th ACM Symposium on the Theory of Computing 1986, 240–246; also Combinatorica 8 (1988), 261–277.

[MS]

N. Madras, G. Slade, The Self-Avoiding Random Walk, Birkhäuser, Boston, 1992.

[Mi]

V.D. Milman, A few observations on the connections between local theory and some other fields, in Geometric Aspects of Functional Analysis, Israel seminar (GAFA) 1986–1987 (J. Lindenstrauss, V.D. Milman, eds.), Springer LNM 1317, (1988), 283–289.

[Mo]

H.L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, CBMS Regional Conference Series in Math. 84, AMS 1994.

[P]

G. Polya, Mathematics and Plausible Reasoning, Vols. I and II, Princeton University Press, 1954.

[RR]

A.A. Razborov, S. Rudich, Natural proofs, in 26th Annual ACM Symposium on the Theory of Computing (STOC '94, Montreal, PQ, 1994); also J. Comput. System Sci. 55 (1997), 24–35.

[Rol]

K. Roth, On certain sets of integers, J. London Math. Soc. 28 (1953), 245–252.

CrossRefMathSciNet [Ro2]

K. Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955), 1–20 (with corrigendum p. 168).

CrossRefMathSciNet [Ru]

I.Z. Ruzsa, Generalized arithmetic progressions and sumsets, Acta Math. Hungar. 65 (1995), 379–388.

CrossRefMathSciNet [S1]

E. Szemerédi, Regular partitions of graphs, Colloques Internationaux C.N.R.S. 260 — Problémes Combinatoires et Theorie des Graphes, Orsay 1976, 399–401.

[S2]

E. Szemerédi, On sets of integers containing no *k* elements in arithmetic progression, Acta Arith. 27 (1975), 299–345.

[S3]

E. Szemerédi, Integer sets containing no arithmetic progressions, Acta Math. Hungar. 56 (1990), 155–158.

CrossRefMATHMathSciNet [TI]

A.G. Thomason, Pseudo-random graphs, Proceedings of Random Graphs, Poznán 1985 (M. Karonski, ed.), Annals of Discrete Mathematics 33, 307–331.

[T2]

A.G. Thomason, A disproof of a conjecture of Erdős in Ramsey theory, J. London Math. Soc. 39 (1989), 246–255.

CrossRefMATHMathSciNet [T3]

A.G. Thomason, Graph products and monochromatic multiplicities, Combinatorica 17 (1997), 125–134.

CrossRefMATHMathSciNet [W]

T.H. Wolff, An improved bound for Kakeya type maximal functions, Revista Mat. Iberoamericana 11 (1995), 651–674.

MATHMathSciNet