Skip to main content

Comparative Evaluation of Lung Cancer CT Image Synthesis with Generative Adversarial Networks

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12744))

Abstract

Generative adversarial networks have already found widespread use for the formation of artificial, but realistic images of a wide variety of content, including medical imaging. Mostly they are considered to be used for expanding and augmenting datasets in order to improve accuracy of neural networks classification. In this paper we discuss the problem of evaluating the quality of computer tomography images of lung cancer, which is characterized by small size of nodules, synthesized using two different generative adversarial network, architectures – for 2D and 3D dimensions. We select the set of metrics for estimating the quality of the generated images, including Visual Turing Test, FID and MRR metrics; then we carry out a problem-oriented modification of the Turing test in order to adapt it both to the actually obtained images and to resource constraints. We compare the constructed GANs using the selected metrics; and we show that such a parameter as the size of the generated image is very important in the development of the GAN architecture. We consider that with this work we have for the first time shown that for small neo-plasms, direct scaling of the corresponding solutions used to generate large neo-plasms (for example, gliomas) is ineffective. Developed assessment methods have shown that additional techniques like MIP and special combinations of metrics are required to generate small neoplasms. In addition, an important conclusion can be considered that it is very important to use GAN networks not only, as is usually the case, for augmentation and expansion of the datasets, but for direct use in clinical practice by radiologists.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html.

  2. 2.

    https://machinelearningmastery.com/how-to-implement-the-frechet-inception-distance-fid-from-scratch/.

  3. 3.

    https://www.kaggle.com/onurtunali/maximum-mean-discrepancy.

References

  1. Goodfellow I.J., et al.: Generative Adversarial Nets. arXiv:1406.2661v1 [stat.ML] 10 Jun 2014

  2. Tschuchnig, M.E., Oostingh, G.J., Gadermayr, M.: Generative adversarial networks in digital pathology: a survey on trends and future potential. Patterns 1(6), 100089 (2020)

    Article  Google Scholar 

  3. Yi, X., Walia, E., Babyn, P.: Generative adversarial network in medical imaging: a review. Med. Image Anal. 58, 101552 (2019)

    Article  Google Scholar 

  4. Kang, H., et al.: Visual and quantitative evaluation of amyloid brain PET image synthesis with generative adversarial network. Appl. Sci. 10, 2628 (2020)

    Article  Google Scholar 

  5. Bargsten, L., Schlaefer, A.: SpeckleGAN: a generative adversarial network with an adaptive speckle layer to augment limited training data for ultrasound image processing. Int. J. Comput. Assist. Radiol. Surg. 15(9), 1427–1436 (2020). https://doi.org/10.1007/s11548-020-02203-1

    Article  Google Scholar 

  6. Levy, J.J., et al.: A large-scale internal validation study of unsupervised virtual trichrome staining technologies on nonalcoholic steatohepatitis liver biopsies. Mod. Pathol. 34(4), 808–822 (2020). https://doi.org/10.1038/s41379-020-00718-1

  7. Borji, A.: Pros and xons of GAN evaluation measures. arXiv:1802.03446v5 [cs.CV] 24 Oct 2018

  8. Kazeminia, S., et al.: GANs for medical image analysis. arXiv.org > cs > arXiv:1809.06222v3. 9 Oct 2019

  9. Wang, T., et al.: A review on medical imaging synthesis using deep learning and its clinical applications. J. Appl. Clin. Vedical Phys. 22(1), 11–36 (2021)

    Article  Google Scholar 

  10. Chuquicusma, M.J.M., Hussein, S., Burt, J., Bagci, U.: How to fool radiologists with generative adversarial networks? A visual turing test for lung cancer diagnosis. In: IEEE International Symposium on Biomedical Imaging (ISBI) (2018)

    Google Scholar 

  11. Onishi, Y., et al.: Automated pulmonary nodule classification in computed tomography images using a deep convolutional neural network trained by generative adversarial networks. Hindawi BioMed. Res. Int. 2019(6051939), 1–9 (2019)

    Google Scholar 

  12. Wang, Y., Zhou, L., Wang, M., et al.: Combination of generative adversarial network and convolutional neural network for automatic subcentimeter pulmonary adenocarcinoma classification. Quant. Imaging Med. Surg. 10(6), 1249–1264 (2020)

    Article  Google Scholar 

  13. Han, C., et al.: Synthesizing diverse lung nodules wherever massively: 3D multi-conditional GAN-based CT image augmentation for object detection. In: 2019 International Conference on 3D Vision (3DV), Quebec City, QC, Canada, pp. 729–737 (2019). https://doi.org/10.1109/3DV.2019.00085

  14. Shi, H., Lu, J., Zhou, Q.: A novel data augmentation method using style-based GAN for robust pulmonary nodule segmentation. In: 2020 Chinese Control and Decision Conference (CCDC), Hefei, China, pp. 2486-2491 (2020)

    Google Scholar 

  15. Jin, D., Xu, Z., Tang, Y., Harrison, A.P., Mollura, D.J.: CT-realistic lung nodule simulation from 3D conditional generative adversarial networks for robust lung segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2018. LNCS, vol. 11071, pp. 732–740. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_81

    Chapter  Google Scholar 

  16. Gao, C., et al.: Augmenting LIDC dataset using 3D generative adversarial networks to improve lung nodule detection. Medical imaging 2019: computer-aided diagnosis. In: International Society for Optics and Photonics, vol. 10950 (2019)

    Google Scholar 

  17. Mirsky, Y. et al.: CT-GAN: malicious tampering of 3D medical imagery using deep learning. In: 28th {USENIX}. Security Symposium ({USENIX} Security 2019), pp. 461–478 (2019)

    Google Scholar 

  18. Han, C., et al.: Learning more with less: conditional PGGAN based data augmentation for brain metastases detection using highly-rough annotation on MR images. In: Proceedings of ACM International Conference on Information and Knowledge Management (CIKM) (2019)

    Google Scholar 

  19. Zhang, J., Xia, Y., Zeng, H., Zhang, Y.: NODULe: combining constrained multi-scale LoG filters with densely dilated 3D deep convolutional neural network for pulmonary nodule detection. Neurocomputing 317, 159–167 (2018)

    Article  Google Scholar 

  20. Zheng, S., Guo J., Cui,, X., Veldhuis, R.N.J., Matthijs, O., van Ooijen, P.M.A.: Automatic pulmonary nodule detection in CT scans using convolutional neural networks based on maximum intensity projection. arXiv:1904.05956 [cs.CV] 10 Jun 2019

  21. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. arXiv:1812.04948v3 [cs.NE] 29 Mar 2019

  22. Chang, A., Suriyakumar, V.M., Moturu, A., et al.: Using generative models for pediatric wbMRI. Medical Imaging with Deep Learning, pp. 1–7 (2020)

    Google Scholar 

  23. Hillis, S.L., Chakraborty, D.P., Orton, C.G.: ROC or FROC? It depends on the research question. Med. Phys. 44(5), 1603–1606 (2017)

    Article  Google Scholar 

  24. Ghosal, S.S., Sarkar, I., Hallaoui, I.E.: Lung nodule classification using convolutional autoencoder and clustering augmented learning method (CALM). http://ceur-ws.org/Vol-2551/paper-05.pdf. Accessed 05 Feb 2021

  25. Salimans, I., Goodfellow, W., Zaremba, V., Cheung, A., Radford, X.: Chen. Improved techniques for training GANs. In: Advances in Neural Information Processing Systems (NIPS), pp. 2234–2242 (2016)

    Google Scholar 

  26. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  27. Haarburger C., et al.: Multiparametric magnetic resonance image synthesis using generative adversarial networks. In: Eurographics Workshop on Visual Computing for Biology and Medicine (2019)

    Google Scholar 

  28. Xu, Q., et al.: An empirical study on evaluation metrics of generative adversarial networks. arXiv. arXiv:1806.07755 (2018)

  29. Lopez-Paz, D., Oquab, M.: Revisiting classifier two-sample tests. arXiv. arXiv:1610.06545 (2016)

  30. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. J. Mach. Learn. Res. 13, 723–773 (2012)

    MathSciNet  MATH  Google Scholar 

  31. Dziugaite, G.K., Roy, D.M., Ghahramani, Z.: Training generative neural networks via maximum mean discrepancy optimization. arXiv preprint arXiv:1505.03906 (2015)

  32. Dowson, D.C., Landau, B.V.: The Fréchet distance between multivariate normal distributions. J. Multivar. Anal. 12(3), 450–455 (1982)

    Article  Google Scholar 

  33. Li, Y., Fan, Y.: DeepSEED: 3D squeeze-and-excitation encoder-decoder convnets for pulmonary nodule detection. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI). IEEE (2020)

    Google Scholar 

  34. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 [cs.CV] 10 Apr 2015

  35. Armato, S.G.: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scan. Med. Phys. 38(2), 915–931 (2011)

    Article  Google Scholar 

  36. Feeman, T.G.: The Mathematics of Medical Imaging: A Beginner’s Guide. Springer Undergraduate Texts in Mathematics and Technology. Springer, New York (2010).978-0387927114

    Book  Google Scholar 

  37. Onishi, Y., et al.: Multiplanar analysis for pulmonary nodule classification in CT images using deep convolutional neural network and generative adversarial networks. Int. J. Comput. Assist. Radiol. Surg. 15(1), 173–178 (2019). https://doi.org/10.1007/s11548-019-02092-z

    Article  Google Scholar 

  38. Gwet, K.L.: Computing inter-rater reliability and its variance in the presence of high agreement. Br. J. Math. Stat. Psychol. 61, 29–48 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Semiletov, A. et al. (2021). Comparative Evaluation of Lung Cancer CT Image Synthesis with Generative Adversarial Networks. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12744. Springer, Cham. https://doi.org/10.1007/978-3-030-77967-2_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77967-2_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77966-5

  • Online ISBN: 978-3-030-77967-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics