Skip to main content

Why Is There So Much DHA in the Brain, Retina and Testis? Possible Implications for Human Reproduction and the Survival of Our Species

  • Chapter
  • First Online:
Book cover Omega-6/3 Fatty Acids

Part of the book series: Nutrition and Health ((NH))

Abstract

It is proposed that the high normal concentration of docosahexaenoic acid (DHA) not only in the brain and retina, but also in the testis is an evolutionary adaptation helping to enhance the rate of electron flow through the respiratory chain in these organs because it enhances the fluidity of the inner mitochondrial membrane. This leads to reduction of the ratio between rates of reactive oxygen species and ATP production, which reduces the rate of oxidative attack on the DNA molecules especially in the mitochondria, but also in the nucleus. If this hypothesis is correct, it must be expected that DHA deficiency in the testes will lead to enhancement of the mutation rate both in mitochondrial and nuclear DNA in male germ cells. It is also possible that it may be one of the most important causes of impaired human semen quality, which is now a widespread problem in several countries. Potential evolutionary consequences are extremely severe because the natural germline mutation rate, calculated as an average for hominid and chimpanzee lineages, is already so high that it can only be compensated for by quasi-truncation selection, and seems to leave almost no safety margin before the Eigen error threshold is exceeded, leading to mutational meltdown. Actual mutation rates in human populations are only partially known, but available data suggest that they may already have exceeded the Eigen error threshold by a large factor. If this cannot be corrected before it is too late, it will mean extinction of the populations concerned and may be of the entire species Homo sapiens in a not very distant future. No effort should be spared, either from the international community of medical and other biological scientists or from governments, in order to prevent this from happening. Thus, correction of DHA deficiency in human populations all over the world should be one of the first priorities in a common effort to limit the rate of human germline cell mutations. To achieve this, it will be necessary worldwide to make new laws regulating the omega-6/omega-3 polyunsaturated fatty acid ratio of animal feeds, meat, offal and eggs as well as of edible fats and oils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 239.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lien EL, Hammond BR. Nutritional influences on visual development and function. Prog Retin Eye Res. 2011;30:188–203.

    Article  PubMed  CAS  Google Scholar 

  2. Axelsen PH, Murphy RC. Quantitative analysis of phospholipids containing arachidonate and docosahexaenoate chains in microdissected regions of mouse brain. J Lipid Res. 2010;51:660–71. Erratum in J Lipid Res. 2010; 51:1244.

    Article  PubMed  CAS  Google Scholar 

  3. McNamara RK, Able J, Jandacek R, Rider T, Tso P, Eliassen JC, et al. Docosahexaenoic acid supplementation increases prefrontal cortex activation during sustained attention in healthy boys: a placebo-controlled, dose-ranging, functional magnetic resonance imaging study. Am J Clin Nutr. 2010;91:1060–7.

    Article  PubMed  CAS  Google Scholar 

  4. Connor WE, Lin DS, Neuringer M. Biochemical markers for puberty in the monkey testis: desmosterol and docosahexaenoic acid. J Clin Endocrinol Metab. 1997;82:1911–6.

    Article  PubMed  CAS  Google Scholar 

  5. Connor WE, Lin DS, Wolf DP, Alexander M. Uneven distribution of desmosterol and docosahexaenoic acid in the heads and tails of monkey sperm. J Lipid Res. 1998;39:1404–11.

    PubMed  CAS  Google Scholar 

  6. Lin DS, Connor WE, Wolf DP, Neuringer M, Hachey DL. Unique lipids of primate spermatozoa: desmosterol and docosahexaenoic acid. J Lipid Res. 1993;34:491–9.

    PubMed  Google Scholar 

  7. Serhan CN, Gotlinger K, Hong S, Arita M. Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their aspirin-triggered endogenous epimers: an overview of their protective roles in catabasis. Prostaglandins Other Lipid Mediat. 2004;73:155–72.

    Article  PubMed  CAS  Google Scholar 

  8. Hellmann J, Tang Y, Kosuri M, Bhatnagar A, Spite M. Resolvin D1 decreases adipose tissue macrophage accumulation and improves insulin sensitivity in obese-diabetic mice. FASEB J. 2011;25:2399–407.

    Article  PubMed  CAS  Google Scholar 

  9. Christophersen OA, Haug A. Animal products, diseases and drugs: a plea for better integration between agricultural sciences, human nutrition and human pharmacology. Lipids Health Dis. 2011;10:16.

    Article  PubMed  Google Scholar 

  10. Gregory RPF. Biochemistry of photosynthesis. 3rd ed. Chichester: Wiley; 1989.

    Google Scholar 

  11. Ormerod J. ‘Every dogma has its day’: a personal look at carbon metabolism in photosynthetic bacteria. Photosynth Res. 2003;76:135–43.

    Article  PubMed  CAS  Google Scholar 

  12. Van der Veen LA, Hashim MF, Shyr Y, Marnett LJ. Induction of frameshift and base pair substitution mutations by the major DNA adduct of the endogenous carcinogen malondialdehyde. Proc Natl Acad Sci USA. 2003;100:14247–52.

    Article  CAS  Google Scholar 

  13. Stein S, Lao Y, Yang IY, Hecht SS, Moriya M. Genotoxicity of acetaldehyde- and crotonaldehyde-induced 1,N2-propanodeoxyguanosine DNA adducts in human cells. Mutat Res. 2006;608:1–7.

    Article  PubMed  CAS  Google Scholar 

  14. Wang HT, Zhang S, Hu Y, Tang MS. Mutagenicity and sequence specificity of acrolein-DNA adducts. Chem Res Toxicol. 2009;22:511–7.

    Article  PubMed  CAS  Google Scholar 

  15. Hu W, Feng Z, Eveleigh J, Iyer G, Pan J, Amin S, et al. The major lipid peroxidation product, trans-4-hydroxy-2-nonenal, preferentially forms DNA adducts at codon 249 of human p53 gene, a unique mutational hotspot in hepatocellular carcinoma. Carcinogenesis. 2002;23:1781–9.

    Article  PubMed  CAS  Google Scholar 

  16. Khodakovskaya M, McAvoy R, Peters J, Wu H, Li Y. Enhanced cold tolerance in transgenic tobacco expressing a chloroplast omega-3 fatty acid desaturase gene under the control of a cold-inducible promoter. Planta. 2006;223:1090–100.

    Article  PubMed  CAS  Google Scholar 

  17. Martz F, Kiviniemi S, Palva TE, Sutinen ML. Contribution of omega-3 fatty acid desaturase and 3-ketoacyl-ACP synthase II (KASII) genes in the modulation of glycerolipid fatty acid composition during cold acclimation in birch leaves. J Exp Bot. 2006;57:897–909.

    Article  PubMed  CAS  Google Scholar 

  18. Wang J, Ming F, Pittman J, Han Y, Hu J, Guo B, et al. Characterization of a rice (Oryza sativa L.) gene encoding a temperature-dependent chloroplast omega-3 fatty acid desaturase. Biochem Biophys Res Commun. 2006;340:1209–16.

    Article  PubMed  CAS  Google Scholar 

  19. Goto M, Ohki K, Nozawa Y. Evidence for a correlation between swimming velocity and membrane fluidity of Tetrahymena cells. Biochim Biophys Acta. 1982;693:335–40.

    Article  PubMed  CAS  Google Scholar 

  20. Connolly JG, Brown ID, Lee AG, Kerkut GA. Temperature-dependent changes in the swimming behaviour of Tetrahymena pyriformis-NT1 and their interrelationships with electrophysiology and the state of membrane lipids. Comp Biochem Physiol A Comp Physiol. 1985;81:303–10.

    Article  PubMed  CAS  Google Scholar 

  21. Dickens BF, Thompson Jr GA. Rapid membrane response during low-temperature acclimation. Correlation of early changes in the physical properties and lipid composition of Tetrahymena microsomal membranes. Biochim Biophys Acta. 1981;644:211–8.

    Article  PubMed  CAS  Google Scholar 

  22. Martin CE, Hiramitsu K, Kitajima Y, Nozawa Y, Skriver L, Thompson GA. Molecular control of membrane properties during temperature acclimation. Fatty acid desaturase regulation of membrane fluidity in acclimating Tetrahymena cells. Biochemistry. 1976;15:5218–27.

    Article  PubMed  CAS  Google Scholar 

  23. Umeki S, Nozawa Y. Thermoadaptive regulation of microsomal desaturase and electron-transport enzyme activities in lipid-manipulated Tetrahymena cells. Extent of unsaturated fatty acid production is dependent on membrane fluidity before temperature down-shift. Biochim Biophys Acta. 1984;793:123–8.

    Article  PubMed  CAS  Google Scholar 

  24. Sanghvi AM, Lo YM. Present and potential industrial applications of macro- and microalgae. Recent Pat Food Nutr Agric. 2010;2:187–94.

    Article  PubMed  Google Scholar 

  25. Eigen M, Schuster P. The hypercycle: a principle of natural self-organization. Berlin: Springer; 1979.

    Google Scholar 

  26. Rowe G, Beebee TJ. Population on the verge of a mutational meltdown? Fitness costs of genetic load for an amphibian in the wild. Evolution. 2003;57:177–81.

    PubMed  Google Scholar 

  27. Malarz K. The risk of extinction—the mutational meltdown or the overpopulation. Theory Biosci. 2007;125:147–56.

    PubMed  Google Scholar 

  28. Allen JM, Light JE, Perotti MA, Braig HR, Reed DL. Mutational meltdown in primary endosymbionts: selection limits Muller’s ratchet. PLoS One. 2009;4:e4969.

    Article  PubMed  CAS  Google Scholar 

  29. Biebricher CK, Eigen M. The error threshold. Virus Res. 2005;107:117–27.

    Article  PubMed  CAS  Google Scholar 

  30. Schuster P. Mathematical modeling of evolution. Solved and open problems. Theory Biosci. 2011;130:71–89.

    Article  PubMed  Google Scholar 

  31. Elena SF, Sanjuán R. Adaptive value of high mutation rates of RNA viruses: separating causes from consequences. J Virol. 2005;79:11555–8.

    Article  PubMed  CAS  Google Scholar 

  32. Biebricher CK, Eigen M. What is a quasispecies? Curr Top Microbiol Immunol. 2006;299:1–31.

    Article  PubMed  CAS  Google Scholar 

  33. Belshaw R, Gardner A, Rambaut A, Pybus OG. Pacing a small cage: mutation and RNA viruses. Trends Ecol Evol. 2008;23:188–93.

    Article  PubMed  Google Scholar 

  34. Crow JF. The high spontaneous mutation rate: is it a health risk? Proc Natl Acad Sci USA. 1997;94:8380–6.

    Article  PubMed  CAS  Google Scholar 

  35. Nachman MW, Crowell SL. Estimate of the mutation rate per nucleotide in humans. Genetics. 2000;156:297–304.

    PubMed  CAS  Google Scholar 

  36. Chen FC, Li WH. Genomic divergences between humans and other hominoids and the effective population size of the common ancestor of humans and chimpanzees. Am J Hum Genet. 2001;68:444–56.

    Article  PubMed  CAS  Google Scholar 

  37. Ebersberger I, Metzler D, Schwarz C, Pääbo S. Genomewide comparison of DNA sequences between humans and chimpanzees. Am J Hum Genet. 2002;70:1490–7.

    Article  PubMed  CAS  Google Scholar 

  38. Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature. 2005;437:69–87.

    Article  CAS  Google Scholar 

  39. Arnheim N, Calabrese P. Understanding what determines the frequency and pattern of human germline mutations. Nat Rev Genet. 2009;10:478–88.

    Article  PubMed  CAS  Google Scholar 

  40. Saakian DB, Biebricher CK, Hu CK. Lethal mutants and truncated selection together solve a paradox of the origin of life. PLoS One. 2011;6:e21904.

    Article  PubMed  CAS  Google Scholar 

  41. Eigen M. Self-organization of matter and the evolution of biological macromolecules. Naturwissenschaften. 1971;58:465–523.

    Article  PubMed  CAS  Google Scholar 

  42. Eigen M, McCaskill JJ, Schuster P. The molecular quasispecies. Adv Chem Phys. 1989;75:149–263.

    Article  CAS  Google Scholar 

  43. Hansen TF, Houle D. Measuring and comparing evolvability and constraint in multivariate characters. J Evol Biol. 2008;21:1201–19. Erratum in J Evol Biol. 2009;22:913–5.

    Article  PubMed  CAS  Google Scholar 

  44. Houle D. Colloquium papers: Numbering the hairs on our heads: the shared challenge and promise of phenomics. Proc Natl Acad Sci USA. 2010;107 Suppl 1:1793–9.

    Article  PubMed  CAS  Google Scholar 

  45. Barja G. Mitochondrial free radical production and aging in mammals and birds. Ann N Y Acad Sci. 1998;854:224–38.

    Article  PubMed  CAS  Google Scholar 

  46. Pamplona R, Portero-Otín M, Requena JR, Thorpe SR, Herrero A, Barja G. A low degree of fatty acid unsaturation leads to lower lipid peroxidation and lipoxidation-derived protein modification in heart mitochondria of the longevous pigeon than in the short-lived rat. Mech Ageing Dev. 1999;106:283–96.

    Article  PubMed  CAS  Google Scholar 

  47. Ma YS, Wu SB, Lee WY, Cheng JS, Wei YH. Response to the increase of oxidative stress and mutation of mitochondrial DNA in aging. Biochim Biophys Acta. 2009;1790:1021–9.

    Article  PubMed  CAS  Google Scholar 

  48. Wei YH, Wu SB, Ma YS, Lee HC. Respiratory function decline and DNA mutation in mitochondria, oxidative stress and altered gene expression during aging. Chang Gung Med J. 2009;32:113–32.

    PubMed  Google Scholar 

  49. Risch N, Reich EW, Wishnick MM, McCarthy JG. Spontaneous mutation and parental age in humans. Am J Hum Genet. 1987;41:218–48.

    PubMed  CAS  Google Scholar 

  50. Aitken RJ, Sawyer D. The human spermatozoon—not waving but drowning. Adv Exp Med Biol. 2003;518:85–98.

    Article  PubMed  Google Scholar 

  51. Koppers AJ, Garg ML, Aitken RJ. Stimulation of mitochondrial reactive oxygen species production by unesterified, unsaturated fatty acids in defective human spermatozoa. Free Radic Biol Med. 2010;48:112–9.

    Article  PubMed  CAS  Google Scholar 

  52. Barroso G, Morshedi M, Oehninger S. Analysis of DNA fragmentation, plasma membrane translocation of phosphatidylserine and oxidative stress in human spermatozoa. Hum Reprod. 2000;15:1338–44.

    Article  PubMed  CAS  Google Scholar 

  53. Aitken RJ, Wingate JK, De Iuliis GN, Koppers AJ, McLaughlin EA. Cis-unsaturated fatty acids stimulate reactive oxygen species generation and lipid peroxidation in human spermatozoa. J Clin Endocrinol Metab. 2006;91:4154–63.

    Article  PubMed  CAS  Google Scholar 

  54. Smith R, Kaune H, Parodi D, Madariaga M, Morales I, Ríos R, et al. Extent of sperm DNA damage in spermatozoa from men examined for infertility. Relationship with oxidative stress. [Article in Spanish]. Rev Med Chil. 2007;135:279–86.

    PubMed  Google Scholar 

  55. Agarwal A, Varghese AC, Sharma RK. Markers of oxidative stress and sperm chromatin integrity. Methods Mol Biol. 2009;590:377–402.

    Article  PubMed  CAS  Google Scholar 

  56. Kondrashov AS. Direct estimates of human per nucleotide mutation rates at 20 loci causing Mendelian diseases. Hum Mutat. 2003;21:12–27.

    Article  PubMed  CAS  Google Scholar 

  57. Qin J, Calabrese P, Tiemann-Boege I, Shinde DN, Yoon SR, Gelfand D, et al. The molecular anatomy of spontaneous germline mutations in human testes. PLoS Biol. 2007;5:e224.

    Article  PubMed  CAS  Google Scholar 

  58. Sun Z, Zhang X, Ito K, Li Y, Montgomery RA, Tachibana S, et al. Amelioration of oxidative mitochondrial DNA damage and deletion after renal ischemic injury by the KATP channel opener diazoxide. Am J Physiol Renal Physiol. 2008;294:F491–8.

    Article  PubMed  CAS  Google Scholar 

  59. Servan-Schreiber D. Anticancer—prévenir et lutter grâce à nos défenses naturelles. Paris: Éditions Robert Laffont, S.A; 2007.

    Google Scholar 

  60. Hertz-Picciotto I, Delwiche L. The rise in autism and the role of age at diagnosis. Epidemiology. 2009;20:84–90.

    Article  PubMed  Google Scholar 

  61. McDonald ME, Paul JF. Timing of increased autistic disorder cumulative incidence. Environ Sci Technol. 2010;44:2112–8.

    Article  PubMed  CAS  Google Scholar 

  62. Herbert MR. Contributions of the environment and environmentally vulnerable physiology to autism spectrum disorders. Curr Opin Neurol. 2010;23:103–10.

    Article  PubMed  Google Scholar 

  63. Lichtenstein P, Carlström E, Råstam M, Gillberg C, Anckarsäter H. The genetics of autism spectrum disorders and related neuropsychiatric disorders in childhood. Am J Psychiatry. 2010;167:1357–63.

    Article  PubMed  Google Scholar 

  64. Ronald A, Hoekstra RA. Autism spectrum disorders and autistic traits: a decade of new twin studies. Am J Med Genet B Neuropsychiatr Genet. 2011;156B:255–74. doi:10.1002/ajmg.b.31159.

    PubMed  Google Scholar 

  65. Oliveira G, Diogo L, Grazina M, Garcia P, Ataíde A, Marques C, et al. Mitochondrial dysfunction in autism spectrum disorders: a population-based study. Dev Med Child Neurol. 2005;47:185–9.

    Article  PubMed  CAS  Google Scholar 

  66. Correia C, Coutinho AM, Diogo L, Grazina M, Marques C, Miguel T, et al. Brief report: high frequency of biochemical markers for mitochondrial dysfunction in autism: no association with the mitochondrial aspartate/glutamate carrier SLC25A12 gene. J Autism Dev Disord. 2006;36:1137–40.

    Article  PubMed  Google Scholar 

  67. Evans C, Dunstan RH, Rothkirch T, Roberts TK, Reichelt KL, Cosford R, et al. Altered amino acid excretion in children with autism. Nutr Neurosci. 2008;11:9–17.

    Article  PubMed  CAS  Google Scholar 

  68. Giulivi C, Zhang YF, Omanska-Klusek A, Ross-Inta C, Wong S, Hertz-Picciotto I, et al. Mitochondrial dysfunction in autism. JAMA. 2010;304:2389–96.

    Article  PubMed  CAS  Google Scholar 

  69. Yap IK, Angley M, Veselkov KA, Holmes E, Lindon JC, Nicholson JK. Urinary metabolic phenotyping differentiates children with autism from their unaffected siblings and age-matched controls. J Proteome Res. 2010;9:2996–3004.

    Article  PubMed  CAS  Google Scholar 

  70. Muhle R, Trentacoste SV, Rapin I. The genetics of autism. Pediatrics. 2004;113:e472–86.

    Article  PubMed  Google Scholar 

  71. Bayou N, M’rad R, Ahlem B, Béchir Helayem M, Chaabouni H. Autism: an overview of genetic aetiology. Tunis Med. 2008;86:573–8.

    PubMed  Google Scholar 

  72. Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R, et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature. 2010;466:368–72.

    Article  PubMed  CAS  Google Scholar 

  73. Blaxill MF. What’s going on? The question of time trends in autism. Public Health Rep. 2004;119:536–51.

    Article  PubMed  Google Scholar 

  74. Constantino JN, Zhang Y, Frazier T, Abbacchi AM, Law P. Sibling recurrence and the genetic epidemiology of autism. Am J Psychiatry. 2010;167:1349–56.

    Article  PubMed  Google Scholar 

  75. Calamera J, Buffone M, Ollero M, Alvarez J, Doncel GF. Superoxide dismutase content and fatty acid composition in subsets of human spermatozoa from normozoospermic, asthenozoospermic, and polyzoospermic semen samples. Mol Reprod Dev. 2003;66:422–30.

    Article  PubMed  CAS  Google Scholar 

  76. Khosrowbeygi A, Zarghami N. Fatty acid composition of human spermatozoa and seminal plasma levels of oxidative stress biomarkers in subfertile males. Prostaglandins Leukot Essent Fatty Acids. 2007;77:117–21.

    Article  PubMed  CAS  Google Scholar 

  77. Hula NM, Tron’ko MD, Volkov HL, Marhitych VM. Lipid composition and fertility of human ejaculate. [Article in Ukrainian]. Ukr Biokhim Zh. 1993;65:64–70.

    PubMed  CAS  Google Scholar 

  78. Zalata AA, Christophe AB, Depuydt CE, Schoonjans F, Comhaire FH. The fatty acid composition of phospholipids of spermatozoa from infertile patients. Mol Hum Reprod. 1998;4:111–8.

    Article  PubMed  CAS  Google Scholar 

  79. Conquer JA, Martin JB, Tummon I, Watson L, Tekpetey F. Fatty acid analysis of blood serum, seminal plasma, and spermatozoa of normozoospermic vs. asthenozoospermic males. Lipids. 1999;34:793–9.

    Article  PubMed  CAS  Google Scholar 

  80. Lenzi A, Gandini L, Maresca V, Rago R, Sgrò P, Dondero F, et al. Fatty acid composition of spermatozoa and immature germ cells. Mol Hum Reprod. 2000;6:226–31.

    Article  PubMed  CAS  Google Scholar 

  81. Gulaya NM, Margitich VM, Govseeva NM, Klimashevsky VM, Gorpynchenko II, Boyko MI. Phospholipid composition of human sperm and seminal plasma in relation to sperm fertility. Arch Androl. 2001;46:169–75.

    Article  PubMed  CAS  Google Scholar 

  82. Aksoy Y, Aksoy H, Altinkaynak K, Aydin HR, Ozkan A. Sperm fatty acid composition in subfertile men. Prostaglandins Leukot Essent Fatty Acids. 2006;75:75–9.

    Article  PubMed  CAS  Google Scholar 

  83. Tavilani H, Doosti M, Abdi K, Vaisiraygani A, Joshaghani HR. Decreased polyunsaturated and increased saturated fatty acid concentration in spermatozoa from asthenozoospermic males as compared with normozoospermic males. Andrologia. 2006;38:173–8.

    Article  PubMed  CAS  Google Scholar 

  84. Oborna I, Wojewodka G, De Sanctis JB, Fingerova H, Svobodova M, Brezinova J, et al. Increased lipid peroxidation and abnormal fatty acid profiles in seminal and blood plasma of normozoospermic males from infertile couples. Hum Reprod. 2010;25:308–16.

    Article  PubMed  CAS  Google Scholar 

  85. Safarinejad MR, Hosseini SY, Dadkhah F, Asgari MA. Relationship of omega-3 and omega-6 fatty acids with semen characteristics, and anti-oxidant status of seminal plasma: a comparison between fertile and infertile men. Clin Nutr. 2010;29:100–5.

    Article  PubMed  CAS  Google Scholar 

  86. Am-in N, Kirkwood RN, Techakumphu M, Tantasuparuk W. Lipid profiles of sperm and seminal plasma from boars having normal or low sperm motility. Theriogenology. 2011;75:897–903.

    Article  PubMed  CAS  Google Scholar 

  87. Waterhouse KE, Hofmo PO, Tverdal A, Miller Jr RR. Within and between breed differences in freezing tolerance and plasma membrane fatty acid composition of boar sperm. Reproduction. 2006;131:887–94.

    Article  PubMed  CAS  Google Scholar 

  88. Zalata AA, Christophe AB, Depuydt CE, Schoonjans F, Comhaire FH. White blood cells cause oxidative damage to the fatty acid composition of phospholipids of human spermatozoa. Int J Androl. 1998;21:154–62.

    Article  PubMed  CAS  Google Scholar 

  89. Kang SW, Rhee SG, Chang TS, Jeong W, Choi MH. 2-Cys peroxiredoxin function in intracellular signal transduction: therapeutic implications. Trends Mol Med. 2005;11:571–8.

    Article  PubMed  CAS  Google Scholar 

  90. Cao Z, Lindsay JG, Isaacs NW. Mitochondrial peroxiredoxins. Subcell Biochem. 2007;44:295–315.

    Article  PubMed  Google Scholar 

  91. Wang S, Huang W, Shi H, Lin C, Xie M, Wang J. Localization and expression of peroxiredoxin II in the mouse ovary, oviduct, uterus, and preimplantation embryo. Anat Rec (Hoboken). 2010;293:291–7.

    Article  CAS  Google Scholar 

  92. Leyens G, Knoops B, Donnay I. Expression of peroxiredoxins in bovine oocytes and embryos produced in vitro. Mol Reprod Dev. 2004;69:243–51.

    Article  PubMed  CAS  Google Scholar 

  93. Romar R, De Santis T, Papillier P, Perreau C, Thélie A, Dell’Aquila ME, Mermillod P, Dalbiès-Tran R. Expression of maternal transcripts during bovine oocyte in vitro maturation is affected by donor age. Reprod Domest Anim. 2011;46:e23–30. doi:10.1111/j.1439-0531.2010.01617.x.

    Article  PubMed  CAS  Google Scholar 

  94. Ellederova Z, Halada P, Man P, Kubelka M, Motlik J, Kovarova H. Protein patterns of pig oocytes during in vitro maturation. Biol Reprod. 2004;71:1533–9.

    Article  PubMed  CAS  Google Scholar 

  95. Lee MS, Liu CH, Lee TH, Wu HM, Huang CC, Huang LS, et al. Association of creatine kinase B and peroxiredoxin 2 expression with age and embryo quality in cumulus cells. J Assist Reprod Genet. 2010;27:629–39.

    Article  PubMed  Google Scholar 

  96. Sasagawa I, Matsuki S, Suzuki Y, Iuchi Y, Tohya K, Kimura M, et al. Possible involvement of the membrane-bound form of peroxiredoxin 4 in acrosome formation during spermiogenesis of rats. Eur J Biochem. 2001;268:3053–61.

    Article  PubMed  CAS  Google Scholar 

  97. Iuchi Y, Okada F, Tsunoda S, Kibe N, Shirasawa N, Ikawa M, et al. Peroxiredoxin 4 knockout results in elevated spermatogenic cell death via oxidative stress. Biochem J. 2009;419:149–58.

    Article  PubMed  CAS  Google Scholar 

  98. Huo R, He Y, Zhao C, Guo XJ, Lin M, Sha JH. Identification of human spermatogenesis-related proteins by comparative proteomic analysis: a preliminary study. Fertil Steril. 2008;90:1109–18.

    Article  PubMed  CAS  Google Scholar 

  99. Flohé L. Selenium in mammalian spermiogenesis. Biol Chem. 2007;388:987–95.

    Article  PubMed  CAS  Google Scholar 

  100. Godeas C, Tramer F, Micali F, Roveri A, Maiorino M, Nisii C, et al. Phospholipid hydroperoxide glutathione peroxidase (PHGPx) in rat testis nuclei is bound to chromatin. Biochem Mol Med. 1996;59:118–24.

    Article  PubMed  CAS  Google Scholar 

  101. Conrad M, Moreno SG, Sinowatz F, Ursini F, Kölle S, Roveri A, et al. The nuclear form of phospholipid hydroperoxide glutathione peroxidase is a protein thiol peroxidase contributing to sperm chromatin stability. Mol Cell Biol. 2005;25:7637–44.

    Article  PubMed  CAS  Google Scholar 

  102. Schneider M, Förster H, Boersma A, Seiler A, Wehnes H, Sinowatz F, et al. Mitochondrial glutathione peroxidase 4 disruption causes male infertility. FASEB J. 2009;23:3233–42.

    Article  PubMed  CAS  Google Scholar 

  103. Schriever SC, Barnes KM, Evenson JK, Raines AM, Sunde RA. Selenium requirements are higher for glutathione peroxidase-1 mRNA than GPx1 activity in rat testis. Exp Biol Med (Maywood). 2009;234:513–21.

    Article  CAS  Google Scholar 

  104. Underwood EJ. Trace elements in human and animal nutrition. 4th ed. New York: Academic; 1977.

    Google Scholar 

  105. Christophersen OA, Haug A, Steinnes E. Deforestation, mineral nutrient depletion in the soil and HIV disease. Science Without Borders. Ecology and Forests For Public Health. Transactions of the International Academy of Science H&E. Special Edition International Conference Oslo 2009. Innsbruck; 2011. p. 26–34.

    Google Scholar 

  106. Conquer JA, Martin JB, Tummon I, Watson L, Tekpetey F. Effect of DHA supplementation on DHA status and sperm motility in asthenozoospermic males. Lipids. 2000;35:149–54.

    Article  PubMed  CAS  Google Scholar 

  107. Safarinejad MR. Effect of omega-3 polyunsaturated fatty acid supplementation on semen profile and enzymatic anti-oxidant capacity of seminal plasma in infertile men with idiopathic oligoasthenoteratospermia: a double-blind, placebo-controlled, randomised study. Andrologia. 2011;43(1):38–47. doi:10.1111/j.1439-0272.2009.01013.x.

    Article  PubMed  CAS  Google Scholar 

  108. Monod J. Le hasard et la nécessité. Essai sur la philosophie naturelle de la biologie moderne. Paris: Éditions du Seuil, 1970. English translation: Chance and necessity. An essay on the natural philosophy of modern biology. New York: Alfred A. Knopf; 1971.

    Google Scholar 

  109. Brynildsen A. Autoriteten, makten og mennesket. [Authority, Power and Man]. [Norwegian book]. Oslo: Dreyer; 1975.

    Google Scholar 

  110. Torgersen J. Fra Hippokrates til Darwin. [From Hippocrates to Darwin] [Norwegian book]. Oslo: Gyldendal Norsk Forlag; 1958.

    Google Scholar 

  111. Haug A, Graham RD, Christophersen OA, Lyons GH. How to use the world’s scarce selenium resources efficiently to increase the selenium concentration in food. Microb Ecol Health Dis. 2007;19:209–28.

    Article  PubMed  CAS  Google Scholar 

  112. Haug A, Christophersen OA, Kinabo J, Kaunda W, Eik LO. Use of dried kapenta (Limnothrissa miodon and Stolothrissa tanganicae) and other products based on whole fish for complementing maize-based diets. AJFAND. 2010;10:2478–500.

    CAS  Google Scholar 

Download references

Acknowledgements

I wish to thank my collaborator through several years, Professor Anna Haug (Norwegian University of Life Sciences) for her important contributions to the present work as well as for all inspiration and valuable discussions, Professor emeritus Tore Midtvedt and Professor emeritus John G. Ormerod for critically reviewing the manuscript, and the latter also for language corrections. I also wish to thank my wife Karen for having given me the opportunity and inspiration to think about evolutionary biology in a more than purely theoretical way. And I wish to thank God for having given me the privilege to live as a conscious human being on this marvellous planet and in this marvellous Universe, and to know from first-hand experience what it means “male and female he created them.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olav A. Christophersen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Christophersen, O.A. (2013). Why Is There So Much DHA in the Brain, Retina and Testis? Possible Implications for Human Reproduction and the Survival of Our Species. In: De Meester, F., Watson, R., Zibadi, S. (eds) Omega-6/3 Fatty Acids. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-215-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-215-5_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-214-8

  • Online ISBN: 978-1-62703-215-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics