Skip to main content

Mechanisms of GABAA and GABAB Receptor Gene Regulation and Cell Surface Expression

  • Chapter
The GABA Receptors

Abstract

The γ-aminobutyric acid (GABA) neurotransmitter acting through ionotropic and metabotropic receptor classes exerts the major inhibitory control in the central nervous system. Therapeutic agents targeting GABA receptors (GABA-R), such as benzodiazepines and baclofen, are used to treat many nervous system conditions, including anxiety and spasticity. The subunit composition of GABA-Rs at the cell surface plays a critical role in determining their physiological and pharmacological properties, and alteration of GABA-R subunit expression has been associated with a number of diseases including schizophrenia, temporal lobe epilepsy, and alcoholism. The ionotropic type A GABA receptor (GABAAR) and type C GABA receptor (GABACR) are pentameric complexes that comprise a ligand gated chloride channel. The metabotropic type B GABA receptor (GABABR) is a heterodimer that couples G protein-signaling to GABA binding. There are eight classes of ionotropic receptor subunits and only two metabotropic receptor subunit classes. Most of the GABAAR subunit genes are localized in syntenic β-α-γ gene clusters on four chromosomes but the two GABABR genes are localized on distinct chromosomes. Control over subunit expression in different brain regions and during development is orchestrated at the genomic level by the use of multiple promoter regions and through the alternative splicing of GABA-R subunit RNAs. This chapter examines current GABA-R research relevant to the many levels of control over receptor gene regulation and cell surface receptor expression that may be relevant to both health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bowery, N. G., Bettler, B., Froestl, W., et al. (2002) International Union of Pharmacology. XXXIII. Mammalian γ-aminobutyric acidB receptors: structure and function. Pharmacol. Rev. 54, 247–264.

    Article  PubMed  CAS  Google Scholar 

  2. Barnard, E. A., Skolnick, P., Olsen, R. W., et al. (1998) International Union of Pharmacology. XV. Subtypes of γ-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function. Pharmacol. Rev. 50, 291–313.

    PubMed  CAS  Google Scholar 

  3. Bormann, J. (2000) The ‘ABC’ of GABA receptors. Trends Pharmacol. Sci. 21, 16–19.

    Article  PubMed  CAS  Google Scholar 

  4. Russek, S. J. (1999) Evolution of GABAA receptor diversity in the human genome. Gene 227, 213–222.

    Article  PubMed  CAS  Google Scholar 

  5. Wilke, K., Gaul, R., Klauck, S. M., and Poustka, A. (1997) A gene in human chromosome band Xq28 (GABRE) defines a putative new subunit class of the GABAA neurotransmitter receptor. Genomics 45, 1–10.

    Article  PubMed  CAS  Google Scholar 

  6. Steiger, J. L., Bandyopadhyay, S., Farb, D. H., and Russek, S. J. (2004) cAMP response element-binding protein, activating transcription factor-4, and upstream stimulatory factor differentially control hippocampal GABABR1a and GABABR1b subunit gene expression through alternative promoters. J. Neurosci. 24, 6115–6126.

    Article  PubMed  CAS  Google Scholar 

  7. Martin, S. C., Russek, S. J., and Farb, D. H. (2001) Human GABABR genomic structure: evidence for splice variants in GABABR1 but not GABABR2. Gene 278, 63–79.

    Article  PubMed  CAS  Google Scholar 

  8. Enz, R., Brandstatter, J. H., Wassle, H., and Bormann, J. (1996) Immunocytochemical localization of the GABAC receptor ρ subunits in the mammalian retina. J. Neurosci. 16, 4479–4490.

    PubMed  CAS  Google Scholar 

  9. Koulen, P., Brandstatter, J. H., Kroger, S., Enz, R., Bormann, J., and Wassle, H. (1997) Immunocytochemical localization of the GABAC receptor ρ subunits in the cat, goldfish, and chicken retina. J. Comp. Neurol. 380, 520–532.

    Article  PubMed  CAS  Google Scholar 

  10. Bormann, J. and Feigenspan, A. (1995) GABAC receptors. Trends Neurosci. 18, 515–519.

    Article  PubMed  CAS  Google Scholar 

  11. Bettler, B., Kaupmann, K., Mosbacher, J., and Gassmann, M. (2004) Molecular structure and physiological functions of GABAB receptors. Physiol. Rev. 84, 835–867.

    Article  PubMed  CAS  Google Scholar 

  12. Martin, S. C., Steiger, J. L., Gravielle, M. C., Lyons, H. R., Russek, S. J., and Farb, D. H. (2004) Differential expression of γ-aminobutyric acid type B receptor subunit mRNAs in the developing nervous system and receptor coupling to adenylyl cyclase in embryonic neurons. J. Comp. Neurol. 473, 16–29.

    Article  PubMed  CAS  Google Scholar 

  13. Wisden, W., Laurie, D., Monyer, H., and Seeburg, P. (1992) The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. J. Neurosci. 12, 1040–1062.

    PubMed  CAS  Google Scholar 

  14. Laurie, D. J., Wisden, W., and Seeburg, P. H. (1992) The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. J. Neurosci. 12, 4151–4172.

    PubMed  CAS  Google Scholar 

  15. Laurie, D. J., Seeburg, P. H., and Wisden, W. (1992) The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. II. Olfactory bulb and cerebellum. J. Neurosci. 12, 1063–1076.

    PubMed  CAS  Google Scholar 

  16. Calver, A. R., Davies, C. H., and Pangalos, M. (2002) GABAB receptors: from monogamy to promiscuity. Neurosignals 11, 299–314.

    Article  PubMed  CAS  Google Scholar 

  17. Seeburg, P. H., Wisden, W., Verdoorn, T. A., et al. (1990) The GABAA receptor family: molecular and functional diversity. Cold Spring Harb. Symp. Quant. Biol. 55, 29–40.

    PubMed  CAS  Google Scholar 

  18. Roca, D. J., Rozenberg, I., Farrant, M., and Farb, D. H. (1990) Chronic agonist exposure induces down-regulation and allosteric uncoupling of the γ-aminobutyric acid/benzodiazepine receptor complex. Mol. Pharmacol. 37, 37–43.

    PubMed  CAS  Google Scholar 

  19. Roca, D. J., Schiller, G. D., Friedman, L., Rozenberg, I., Gibbs, T. T., and Farb, D. H. (1990) γ-aminobutyric acidA receptor regulation in culture: altered allosteric interactions following prolonged exposure to benzodiazepines, barbiturates, and methylxanthines. Mol. Pharmacol. 37, 710–719.

    PubMed  CAS  Google Scholar 

  20. Montpied, P., Ginns, E. I., Martin, B. M., Roca, D., Farb, D. H., and Paul, S. M. (1991) γ-aminobutyric acid (GABA) induces a receptor-mediated reduction in GABAA receptor α subunit messenger RNAs in embryonic chick neurons in culture. J. Biol. Chem. 266, 6011–6014.

    PubMed  CAS  Google Scholar 

  21. Friedman, L. K., Gibbs, T. T., and Farb, D. H. (1996) γ-aminobutyric acidA receptor regulation: heterologous uncoupling of modulatory site interactions induced by chronic steroid, barbiturate, benzodiazepine, or GABA treatment in culture. Brain Res. 707, 100–109.

    Article  PubMed  CAS  Google Scholar 

  22. Lyons, H. R., Land, M. B., Gibbs, T. T., and Farb, D. H. (2001) Distinct signal transduction pathways for GABA-induced GABAA receptor down-regulation and uncoupling in neuronal culture: a role for voltage-gated calcium channels. J. Neurochem. 78, 1114–1126.

    Article  PubMed  CAS  Google Scholar 

  23. Russek, S. J., Bandyopadhyay, S., and Farb, D. H. (2000) An initiator element mediates autologous downregulation of the human type A γ-aminobutyric acid receptor β1 subunit gene. Proc. Natl. Acad. Sci. USA 97, 8600–8605.

    Article  PubMed  CAS  Google Scholar 

  24. Kaupmann, K., Huggel, K., Heid, J., et al. (1997) Expression cloning of GABAB receptors uncovers similarity to metabotropic glutamate receptors. Nature 386, 239–246.

    Article  PubMed  CAS  Google Scholar 

  25. Kaupmann, K., Malitschek, B., Schuler, V., et al. (1998) GABAB-receptor subtypes assemble into functional heteromeric complexes. Nature 396, 683–687.

    Article  PubMed  CAS  Google Scholar 

  26. Jones, K. A., Borowsky, B., Tamm, J. A., et al. (1998) GABAB receptors function as a heteromeric assembly of the subunits GABABR1 and GABABR2. Nature 396, 674–679.

    Article  PubMed  CAS  Google Scholar 

  27. White, J. H., Wise, A., Main, M. J., et al. (1998) Heterodimerization is required for the formation of a functional GABAB receptor. Nature 396, 679–682.

    Article  PubMed  CAS  Google Scholar 

  28. Martin, S. C., Russek, S. J., and Farb, D. H. (1999) Molecular identification of the human GABABR2: cell surface expression and coupling to adenylyl cyclase in the absence of GABABR1. Mol. Cell. Neurosci. 13, 180–191.

    Article  PubMed  CAS  Google Scholar 

  29. Kuner, R., Kohr, G., Grunewald, S., Eisenhardt, G., Bach, A., and Kornau, H. C. (1999) Role of heteromer formation in GABAB receptor function. Science 283, 74–77.

    Article  PubMed  CAS  Google Scholar 

  30. Ng, G. Y., Clark, J., Coulombe, N., et al. (1999) Identification of a GABAB receptor subunit, gb2, required for functional GABAB receptor activity. J. Biol. Chem. 274, 7607–7610.

    Article  PubMed  CAS  Google Scholar 

  31. Macdonald, R. L. and Olsen, R. W. (1994) GABAA receptor channels. Ann. Rev. Neurosci. 17, 569–602.

    PubMed  CAS  Google Scholar 

  32. Smith, G. B. and Olsen, R.W. (1995) Functional domains of GABAA receptors. Trends Pharmacol. Sci. 16, 162–168.

    Article  PubMed  CAS  Google Scholar 

  33. Sieghart, W. (1995) Structure and pharmacology of γ-aminobutyric acidA receptor subtypes. Pharmacol. Rev. 47, 181–234.

    PubMed  CAS  Google Scholar 

  34. Sieghart, W., Fuchs, K., Tretter, V., et al. (1999) Structure and subunit composition of GABAA receptors. Neurochem. Int. 34, 379–385.

    Article  PubMed  CAS  Google Scholar 

  35. Jechlinger, M., Pelz, R., Tretter, V., Klausberger, T., and Sieghart, W. (1998) Subunit composition and quantitative importance of hetero-oligomeric receptors: GABAA receptors containing α6 subunits. J. Neurosci. 18, 2449–2457.

    PubMed  CAS  Google Scholar 

  36. Chang, Y., Wang, R., Barot, S., and Weiss, D. S. (1996) Stoichiometry of a recombinant GABAA receptor. J. Neurosci. 16, 5415–5424.

    PubMed  CAS  Google Scholar 

  37. Backus, K. H., Arigoni, M., Drescher, U., et al. (1993) Stoichiometry of a recombinant GABAA receptor deduced from mutation-induced rectification. Neuroreport 5, 285–288.

    Article  PubMed  CAS  Google Scholar 

  38. Ranna, M., Sinkkonen, S. T., Moykkynen, T., Uusi-Oukari, M., and Korpi, E. R. (2006) Impact of ɛ and θ subunits on pharmacological properties of α3β1 GABAA receptors expressed in Xenopus oocytes. BMC. Pharmacol. 6, 1.

    Article  PubMed  CAS  Google Scholar 

  39. Darlison, M. G., Pahal, I., and Thode, C. (2005) Consequences of the evolution of the GABAA receptor gene family. Cell. Mol. Neurobiol. 25, 607–624.

    Article  PubMed  CAS  Google Scholar 

  40. Steiger, J. L. and Russek, S. J. (2004) GABAA receptors: building the bridge between subunit mRNAs, their promoters, and cognate transcription factors. Pharmacol. Ther. 101, 259–281.

    Article  PubMed  CAS  Google Scholar 

  41. Bell, M. V., Bloomfield, J., McKinley, M., et al. (1989) Physical linkage of a GABAA receptor subunit gene to the DXS374 locus in human Xq28. Am. J. Hum. Genet. 45, 883–888.

    PubMed  CAS  Google Scholar 

  42. Sinnett, D., Wagstaff, J., Glatt, K., Woolf, E., Kirkness, E. J., and Lalande, M. (1993) High-resolution mapping of the γ-aminobutyric acid receptor subunit β3 and α5 gene cluster on chromosome 15q11-q13, and localization of breakpoints in two Angelman syndrome patients. Am. J. Hum. Genet. 52, 1216–1229.

    PubMed  CAS  Google Scholar 

  43. Greger, V., Knoll, J. H., Woolf, E., et al. (1995) The γ-aminobutyric acid receptor γ3 subunit gene (GABRG3) is tightly linked to the α5 subunit gene (GABRA5) on human chromosome 15q11-q13 and is transcribed in the same orientation. Genomics 26, 258–264.

    Article  PubMed  CAS  Google Scholar 

  44. Levin, M. L., Chatterjee, A., Pragliola, A., et al. (1996) A comparative transcription map of the murine bare patches (Bpa) and striated (Str) critical regions and human Xq28. Genome Res. 6, 465–477.

    Article  PubMed  CAS  Google Scholar 

  45. Buckle, V. J., Fujita, N., Ryder-Cook, A. S., et al. (1989) Chromosomal localization of GABAA receptor subunit genes: relationship to human genetic disease. Neuron 3, 647–654.

    Article  PubMed  CAS  Google Scholar 

  46. Kirkness, E. F., Kusiak, J. W., Fleming, J. T., et al. (1991) Isolation, characterization, and localization of human genomic DNA encoding the β1 subunit of the GABAA receptor (GABRB1). Genomics 10, 985–995.

    Article  PubMed  CAS  Google Scholar 

  47. McLean, P. J., Farb, D. H., and Russek, S. J. (1995) Mapping of the α4 subunit gene (GABRA4) to human chromosome 4 defines an α2-α4-β1-γ1 gene cluster: further evidence that modern GABAA receptor gene clusters are derived from an ancestral cluster. Genomics 26, 580–586.

    Article  PubMed  CAS  Google Scholar 

  48. Wilcox, A. S., Warrington, J. A., Gardiner, K., et al. (1992) Human chromosomal localization of genes encoding the γ1 and γ2 subunits of the γ-aminobutyric acid receptor indicates that members of this gene family are often clustered in the genome. Proc. Natl. Acad. Sci. USA 89, 5857–5861.

    Article  PubMed  CAS  Google Scholar 

  49. Russek, S. J. and Farb, D. H. (1994) Mapping of the β2 subunit gene (GABRB2) to microdissected human chromosome 5q34–q35 defines a gene cluster for the most abundant GABAA receptor isoform. Genomics 23, 528–533.

    Article  PubMed  CAS  Google Scholar 

  50. Kostrzewa, M., Kohler, A., Eppelt, K., et al. (1996) Assignment of genes encoding GABAA receptor subunits α1, α6, β2, and γ2 to a YAC contig of 5q33. Eur. J. Hum. Genet. 4, 199–204.

    PubMed  CAS  Google Scholar 

  51. Johnson, K. J., Sander, T., Hicks, A. A., et al. (1992) Confirmation of the localization of the human GABAA receptor α1-subunit gene (GABRA1) to distal 5q by linkage analysis. Genomics 14, 745–748.

    Article  PubMed  CAS  Google Scholar 

  52. Wagstaff, J., Knoll, J. H., Fleming, J., et al. (1991) Localization of the gene encoding the GABAA receptor β3 subunit to the Angelman/Prader-Willi region of human chromosome 15. Am. J. Hum. Genet. 49, 330–337.

    PubMed  CAS  Google Scholar 

  53. Knoll, J. H., Sinnett, D., Wagstaff, J., et al. (1993) FISH ordering of reference markers and of the gene for the α5 subunit of the γ-aminobutyric acid receptor (GABRA5) within the Angelman and Prader-Willi syndrome chromosomal regions. Hum. Mol. Genet. 2, 183–189.

    Article  PubMed  CAS  Google Scholar 

  54. Wagstaff, J., Chaillet, J. R., and Lalande, M. (1991) The GABAA receptor β3 subunit gene: characterization of a human cDNA from chromosome 15q11q13 and mapping to a region of conserved synteny on mouse chromosome 7. Genomics 11, 1071–1078.

    Article  PubMed  CAS  Google Scholar 

  55. Nakatsu, Y., Tyndale, R. F., DeLorey, T. M., et al. (1993) A cluster of three GABAA receptor subunit genes is deleted in a neurological mutant of the mouse p locus. Nature 364, 448–450.

    Article  PubMed  CAS  Google Scholar 

  56. Cutting, G. R., Curristin, S., Zoghbi, H., O’Hara, B., Seldin, M. F., and Uhl, G. R. (1992) Identification of a putative γ-aminobutyric acid (GABA) receptor subunit rho2 cDNA and colocalization of the genes encoding rho2 (GABRR2) and rho1 (GABRR1) to human chromosome 6q14-q21 and mouse chromosome 4. Genomics 12, 801–806.

    Article  PubMed  CAS  Google Scholar 

  57. Bailey, M. E., Albrecht, B. E., Johnson, K. J., and Darlison, M. G. (1999) Genetic linkage and radiation hybrid mapping of the three human GABAC receptor ρ subunit genes: GABRR1, GABRR2 and GABRR3. Biochim. Biophys. Acta. 1447, 307–312.

    PubMed  CAS  Google Scholar 

  58. Sommer, B., Poustka, A., Spurr, N. K., and Seeburg, P. H. (1990) The murine GABAA receptor δ-subunit gene: structure and assignment to human chromosome 1. DNA Cell. Biol. 9, 561–568.

    PubMed  CAS  Google Scholar 

  59. Emberger, W., Windpassinger, C., Petek, E., Kroisel, P. M., and Wagner, K. (2000) Assignment of the human GABAA receptor δ-subunit gene (GABRD) to chromosome band 1p36.3 distal to marker NIB1364 by radiation hybrid mapping. Cytogenet. Cell. Genet. 89, 281–282.

    Article  PubMed  CAS  Google Scholar 

  60. Bailey, M. E., Matthews, D. A., Riley, B. P., et al. (1999) Genomic mapping and evolution of human GABAA receptor subunit gene clusters. Mamm. Genome. 10, 839–843.

    Article  PubMed  CAS  Google Scholar 

  61. Ma, W., Saunders, P. A., Somogyi, R., Poulter, M. O., and Barker, J. L. (1993) Ontogeny of GABAA receptor subunit mRNAs in rat spinal cord and dorsal root ganglia. J. Comp. Neurol. 338, 337–359.

    Article  PubMed  CAS  Google Scholar 

  62. Bank, A. (2006) Regulation of human fetal hemoglobin: new players, new complexities. Blood 107, 435–443.

    Article  PubMed  CAS  Google Scholar 

  63. Tian, H., Chen, H. J., Cross, T. H., and Edenberg, H. J. (2005) Alternative splicing and promoter use in the human GABRA2 gene. Mol. Brain Res. 137, 174–183.

    Article  PubMed  CAS  Google Scholar 

  64. Kim, Y., Glatt, H., Xie, W., Sinnett, D., and Lalande, M. (1997) Human γ-aminobutyric acid-type A receptor α5 subunit gene (GABRA5): characterization and structural organization of the 5′ flanking region. Genomics 42, 378–387.

    Article  PubMed  CAS  Google Scholar 

  65. Kirkness, E. and Fraser, C. (1993) A strong promoter element is located between alternative exons of a gene encoding the human γ-aminobutyric acid-type A receptor β3 subunit (GABRB3). J. Biol. Chem. 268, 4420–4428.

    PubMed  CAS  Google Scholar 

  66. Fuchs, K. and Celepirovic, N. (2002) The 5′-flanking region of the rat GABAA receptor α2-subunit gene (GABRA2). J. Neurochem. 82, 1512–1523.

    Article  PubMed  CAS  Google Scholar 

  67. Edenberg, H. J. (2002) The collaborative study on the genetics of alcoholism: an update. Alcohol Res. Health 26, 214–218.

    PubMed  Google Scholar 

  68. Mu, W., Cheng, Q., Yang, J., and Burt, D. R. (2002) Alternative splicing of the GABAA receptor α4 subunit creates a severely truncated mRNA. Brain Res. Bull. 58, 447–454.

    Article  PubMed  CAS  Google Scholar 

  69. Glatt, K., Glatt, H., and Lalande, M. (1997) Structure and organization of GABRB3 and GABRA5. Genomics 41, 63–69.

    Article  PubMed  CAS  Google Scholar 

  70. Davies, P. A., McCartney, M. R., Wang, W., Hales, T. G., and Kirkness, E. F. (2002) Alternative transcripts of the GABAA receptor ɛ subunit in human and rat. Neuropharmacology 43, 467–475.

    Article  PubMed  CAS  Google Scholar 

  71. Korpi, E. R., Kuner, T., Kristo, P., et al. (1994) Small N-terminal deletion by splicing in cerebellar α6 subunit abolishes GABAA receptor function. J. Neurochem. 63, 1167–1170.

    Article  PubMed  CAS  Google Scholar 

  72. Martinez-Torres, A., Vazquez, A. E., Panicker, M. M., and Miledi, R. (1998) Cloning and functional expression of alternative spliced variants of the ρ1 γ-aminobutyrate receptor. Proc. Natl. Acad. Sci. USA 95, 4019–4022.

    Article  PubMed  CAS  Google Scholar 

  73. McKinley, D. D., Lennon, D. J., and Carter, D. B. (1995) Cloning, sequence analysis and expression of two forms of mRNA coding for the human β2 subunit of the GABAA receptor. Mol. Brain Res. 28, 175–179.

    Article  PubMed  CAS  Google Scholar 

  74. Whiting, P., McKernan, R., and Iversen, L. (1990) Another mechanism for creating diversity in γ-aminobutyrate type A receptors: RNA splicing directs expression of two forms of γ2 subunit, one of which contains a protein kinase C phosphorylation site. Proc. Natl. Acad. Sci. USA 87, 9966–9970.

    Article  PubMed  CAS  Google Scholar 

  75. Poulsen, C. F., Christjansen, K. N., Hastrup, S., and Hartvig, L. (2000) Identification and cloning of a γ3 subunit splice variant of the human GABAA receptor. Mol. Brain Res. 78, 201–203.

    Article  PubMed  CAS  Google Scholar 

  76. Wang, J. B. and Burt, D. R. (1991) Differential expression of two forms of GABAA receptor γ2-subunit in mice. Brain Res. Bull. 27, 731–735.

    Article  PubMed  CAS  Google Scholar 

  77. Jin, P., Zhang, J., Rowe-Teeter, C., Yang, J., Stuve, L. L., and Fu, G. K. (2004) Cloning and characterization of a GABAA receptor γ2 subunit variant. J. Biol. Chem. 279, 1408–1414.

    Article  PubMed  CAS  Google Scholar 

  78. Fritschy, J. M., Paysan, J., Enna, A., and Mohler, H. (1994) Switch in the expression of rat GABAA-receptor subtypes during postnatal development: an immunohistochemical study. J. Neurosci. 14, 5302–5324.

    PubMed  CAS  Google Scholar 

  79. Poulter, M. O., Barker, J. L., O’Carroll, A. M., Lolait, S. J., and Mahan, L. C. (1992) Differential and transient expression of GABAA receptor α-subunit mRNAs in the developing rat CNS. J. Neurosci. 12, 2888–2900.

    PubMed  CAS  Google Scholar 

  80. Roberts, A. A. and Kellogg, C. K. (2000) Synchronous postnatal increase in α1 and γ2L GABAA receptor mRNAs and high affinity zolpidem binding across three regions of rat brain. Dev. Brain Res. 119, 21–32.

    Article  CAS  Google Scholar 

  81. Candy, J. M. and Martin, I. L. (1979) The postnatal development of the benzodiazepine receptor in the cerebral cortex and cerebellum of the rat. J. Neurochem. 32, 655–658.

    Article  PubMed  CAS  Google Scholar 

  82. Lippa, A. S., Beer, B., Sano, M. C., Vogel, R. A., and Meyerson, L. R. (1981) Differential ontogeny of type 1 and type 2 benzodiazepine receptors. Life Sci. 28, 2343–2347.

    Article  PubMed  CAS  Google Scholar 

  83. Chisholm, J., Kellogg, C., and Lippa, A. (1983) Development of benzodiazepine binding subtypes in three regions of rat brain. Brain Res. 267, 388–391.

    Article  PubMed  CAS  Google Scholar 

  84. Pirker, S., Schwarzer, C., Wieselthaler, A., Sieghart, W., and Sperk, G. (2000) GABAA receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience 101, 815–850.

    Article  PubMed  CAS  Google Scholar 

  85. Benke, D., Fritschy, J., Trzeciak, A., Bannwarth, W., and Mohler, H. (1994) Distribution, prevalence, and drug binding profile of γ-aminobutyric acid type A receptor subtypes differing in the β-subunit variant. J. Biol. Chem. 269, 27,100–27,107.

    CAS  Google Scholar 

  86. Li, M. and De Blas, A. L. (1997) Coexistence of two β subunit isoforms in the same γ-aminobutyric acid type A receptor. J. Biol. Chem. 272, 16,564–16,569.

    CAS  Google Scholar 

  87. Gutierrez, A., Khan, Z. U., and De Blas, A. L. (1994) Immunocytochemical localization of γ2 short and γ2 long subunits of the GABAA receptor in the rat brain. J. Neurosci. 14, 7168–7179.

    PubMed  CAS  Google Scholar 

  88. Moragues, N., Ciofi, P., Lafon, P., Odessa, M. F., Tramu, G., and Garret, M. (2000) cDNA cloning and expression of a γ-aminobutyric acid A receptor ɛ-subunit in rat brain. Eur. J. Neurosci. 12, 4318–4330.

    Article  PubMed  CAS  Google Scholar 

  89. Neelands, T. R. and Macdonald, R. L. (1999) Incorporation of the π subunit into functional γ-aminobutyric AcidA receptors. Mol. Pharmacol. 56, 598–610.

    PubMed  CAS  Google Scholar 

  90. Hedblom, E. and Kirkness, E. F. (1997) A novel class of GABAA receptor subunit in tissues of the reproductive system. J. Biol. Chem. 272, 15,346–15,350.

    Article  CAS  Google Scholar 

  91. Boue-Grabot, E., Roudbaraki, M., Bascles, L., Tramu, G., Bloch, B., and Garret, M. (1998) Expression of GABA receptor ρ subunits in rat brain. J. Neurochem. 70, 899–907.

    Article  PubMed  CAS  Google Scholar 

  92. Enz, R., Brandstatter, J. H., Hartveit, E., Wassle, H., and Bormann, J. (1995) Expression of GABA receptor ρ1 and ρ2 subunits in the retina and brain of the rat. Eur. J. Neurosci. 7, 1495–1501.

    Article  PubMed  CAS  Google Scholar 

  93. Sinkkonen, S. T., Hanna, M. C., Kirkness, E. F., and Korpi, E. R. (2000) GABAA receptor ɛ and θ subunits display unusual structural variation between species and are enriched in the rat locus ceruleus. J. Neurosci. 20, 3588–3595.

    PubMed  CAS  Google Scholar 

  94. Bonnert, T. P., McKernan, R. M., Farrar, S., et al. (1999) θ, a novel γ-aminobutyric acid type A receptor subunit. Proc. Natl. Acad. Sci. USA 96, 9891–9896.

    Article  PubMed  CAS  Google Scholar 

  95. Nusser, Z., Roberts, J. D., Baude, A., Richards, J. G., and Somogyi, P. (1995) Relative densities of synaptic and extrasynaptic GABAA receptors on cerebellar granule cells as determined by a quantitative immunogold method. J. Neurosci. 15, 2948–2960.

    PubMed  CAS  Google Scholar 

  96. Nusser, Z., Sieghart, W., and Somogyi, P. (1998) Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J. Neurosci. 18, 1693–1703.

    PubMed  CAS  Google Scholar 

  97. Somogyi, P., Fritschy, J. M., Benke, D., Roberts, J. D., and Sieghart, W. (1996) The γ2 subunit of the GABAA receptor is concentrated in synaptic junctions containing the α1 and β2/3 subunits in hippocampus, cerebellum and globus pallidus. Neuropharmacology 35, 1425–1444.

    Article  PubMed  CAS  Google Scholar 

  98. Fritschy, J. M., Johnson, D. K., Mohler, H., and Rudolph, U. (1998) Independent assembly and subcellular targeting of GABAA receptor subtypes demonstrated in mouse hippocampal and olfactory neurons in vivo. Neurosci. Lett. 249, 99–102.

    Article  PubMed  CAS  Google Scholar 

  99. Brunig, I., Scotti, E., Sidler, C., and Fritschy, J. M. (2002) Intact sorting, targeting, and clustering of γ-aminobutyric acid A receptor subtypes in hippocampal neurons in vitro. J. Comp. Neurol. 443, 43–55.

    Article  PubMed  CAS  Google Scholar 

  100. Wei, W., Zhang, N., Peng, Z., Houser, C. R., and Mody, I. (2003) Perisynaptic localization of δ subunit-containing GABAA receptors and their activation by GABA spillover in the mouse dentate gyrus. J. Neurosci. 23, 10,650–10,661.

    CAS  Google Scholar 

  101. Farrant, M. and Nusser, Z. (2005) Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors. Nat. Rev. Neurosci. 6, 215–229.

    Article  PubMed  CAS  Google Scholar 

  102. MacDermott, A. B., Role, L. W., and Siegelbaum, S. A. (1999) Presynaptic ionotropic receptors and the control of transmitter release. Ann. Rev. Neurosci. 22, 443–485.

    Article  PubMed  CAS  Google Scholar 

  103. Bohlhalter, S., Weinmann, O., Mohler, H., and Fritschy, J. M. (1996) Laminar compartmentalization of GABAA receptor subtypes in the spinal cord: an immunohistochemical study. J. Neurosci. 16, 283–297.

    PubMed  CAS  Google Scholar 

  104. Sur, C., McKernan, R., and Triller, A. (1995) Subcellular localization of the GABAA receptor γ2 subunit in the rat spinal cord. Eur. J. Neurosci. 7, 1323–1332.

    Article  PubMed  CAS  Google Scholar 

  105. Alvarez, F. J., Taylor-Blake, B., Fyffe, R. E., De Blas, A. L., and Light, A. R. (1996) Distribution of immunoreactivity for the β2 and β3 subunits of the GABAA receptor in the mammalian spinal cord. J. Comp. Neurol. 365, 392–412.

    Article  PubMed  CAS  Google Scholar 

  106. Caillard, O., Ben-Ari, Y., and Gaiarsa, J. L. (1999) Long-term potentiation of GABAergic synaptic transmission in neonatal rat hippocampus. J. Physiol. 518, 109–119.

    Article  PubMed  CAS  Google Scholar 

  107. Caillard, O., Ben-Ari, Y., and Gaiarsa, J. L. (1999) Mechanisms of induction and expression of long-term depression at GABAergic synapses in the neonatal rat hippocampus. J. Neurosci. 19, 7568–7577.

    PubMed  CAS  Google Scholar 

  108. Gaiarsa, J. L., Caillard, O., and Ben-Ari, Y. (2002) Long-term plasticity at GABAergic and glycinergic synapses: mechanisms and functional significance. Trends Neurosci. 25, 564–570.

    Article  PubMed  CAS  Google Scholar 

  109. Poulter, M. O., Ohannesian, L., Larmet, Y., and Feltz, P. (1997) Evidence that GABAA receptor subunit mRNA expression during development is regulated by GABAA receptor stimulation. J. Neurochem. 68, 631–639.

    Article  PubMed  CAS  Google Scholar 

  110. Clements, J. D. (1996) Transmitter timecourse in the synaptic cleft: its role in central synaptic function. Trends Neurosci. 19, 163–171.

    Article  PubMed  CAS  Google Scholar 

  111. Mountcastle, V. B., Talbot, W. H., Sakata, H., and Hyvarinen, J. (1969) Cortical neuronal mechanisms in flutter-vibration studied in unanesthetized monkeys. Neuronal periodicity and frequency discrimination. J. Neurophysiol. 32, 452–484.

    PubMed  CAS  Google Scholar 

  112. Ranck, J. B. Jr. (1973) Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats. I. Behavioral correlates and firing repertoires. Exp. Neurol. 41, 461–531.

    Article  PubMed  Google Scholar 

  113. Hajos, N., Palhalmi, J., Mann, E. O., Nemeth, B., Paulsen, O., and Freund, T. F. (2004) Spike timing of distinct types of GABAergic interneuron during hippocampal gamma oscillations in vitro. J. Neurosci. 24, 9127–9137.

    Article  PubMed  CAS  Google Scholar 

  114. Jones, M. V. and Westbrook, G. L. (1995) Desensitized states prolong GABAA channel responses to brief agonist pulses. Neuron 15, 181–191.

    Article  PubMed  CAS  Google Scholar 

  115. Bianchi, M. T. and Macdonald, R. L. (2001) Agonist trapping by GABAA receptor channels. J. Neurosci. 21, 9083–9091.

    PubMed  CAS  Google Scholar 

  116. Timofeev, I., Grenier, F., and Steriade, M. (2002) The role of chloride-dependent inhibition and the activity of fast-spiking neurons during cortical spike-wave electrographic seizures. Neuroscience 114, 1115–1132.

    PubMed  CAS  Google Scholar 

  117. Hutchinson, P. J., O’Connell, M. T., Al-Rawi, P. G., et al. (2002) Increases in GABA concentrations during cerebral ischaemia: a microdialysis study of extracellular amino acids. J. Neurol. Neurosurg. Psychiatry 72, 99–105.

    Article  PubMed  CAS  Google Scholar 

  118. Swift, C. G., Swift, M. R., Hamley, J., Stevenson, I. H., and Crooks, J. (1984) Side-effect ‘tolerance’ in elderly long-term recipients of benzodiazepine hypnotics. Age Ageing 13, 335–343.

    Article  PubMed  CAS  Google Scholar 

  119. Seidel, W. F., Cohen, S. A., Wilson, L., and Dement, W. C. (1985) Effects of alprazolam and diazepam on the daytime sleepiness of non-anxious subjects. Psychopharmacology 87, 194–197.

    Article  PubMed  CAS  Google Scholar 

  120. Haigh, J. R. and Feely, M. (1988) Tolerance to the anticonvulsant effect of benzodiazepines. Trends Pharmacol. Sci. 9, 361–366.

    Article  PubMed  CAS  Google Scholar 

  121. Gallager, D. W., Lakoski, J. M., Gonsalves, S. F., and Rauch, S. L. (1984) Chronic benzodiazepine treatment decreases postsynaptic GABA sensitivity. Nature 308, 74–77.

    Article  PubMed  CAS  Google Scholar 

  122. Holt, R. A., Bateson, A. N., and Martin, I. L. (1999) Decreased GABA enhancement of benzodiazepine binding after a single dose of diazepam. J. Neurochem. 72, 2219–2222.

    Article  PubMed  CAS  Google Scholar 

  123. Lyons, H. R., Gibbs, T. T., and Farb, D. H. (2000) Turnover and down-regulation of GABAA receptor α1, β2S, and γ1 subunit mRNAs by neurons in culture. J. Neurochem. 74, 1041–1048.

    Article  PubMed  CAS  Google Scholar 

  124. Friedman, L., Gibbs, T. T., and Farb, D. H. (1993) γ-aminobutyric acidA receptor regulation: chronic treatment with pregnanolone uncouples allosteric interactions between steroid and benzodiazepine recognition sites. Mol. Pharmacol. 44, 191–197.

    PubMed  CAS  Google Scholar 

  125. Follesa, P., Serra, M., Cagetti, E., et al. (2000) Allopregnanolone synthesis in cerebellar granule cells: roles in regulation of GABAA receptor expression and function during progesterone treatment and withdrawal. Mol. Pharmacol. 57, 1262–1270.

    PubMed  CAS  Google Scholar 

  126. Klein, R. L., Whiting, P. J., and Harris, R. A. (1994) Benzodiazepine treatment causes uncoupling of recombinant GABAA receptors expressed in stably transfected cells. J. Neurochem. 63, 2349–2352.

    Article  PubMed  CAS  Google Scholar 

  127. Wong, G., Lyon, T., and Skolnick, P. (1994) Chronic exposure to benzodiazepine receptor ligands uncouples the γ-aminobutyric acid type A receptor in WSS-1 cells. Mol. Pharmacol. 46, 1056–1062.

    PubMed  CAS  Google Scholar 

  128. Ali, N. J. and Olsen, R. W. (2001) Chronic benzodiazepine treatment of cells expressing recombinant GABAA receptors uncouples allosteric binding: studies on possible mechanisms. J. Neurochem. 79, 1100–1108.

    Article  PubMed  CAS  Google Scholar 

  129. Gravielle, M. C., Faris, R., Russek, S. J., and Farb, D. H. (2005) GABA induces activity dependent delayed-onset uncoupling of GABA/benzodiazepine site interactions in neocortical neurons. J. Biol. Chem. 280, 20,954–20,960.

    Article  CAS  Google Scholar 

  130. Stelzer, A., Kay, A. R., and Wong, R. K. (1988) GABAA-receptor function in hippocampal cells is maintained by phosphorylation factors. Science 241, 339–341.

    Article  PubMed  CAS  Google Scholar 

  131. Gyenes, M., Wang, Q., Gibbs, T. T., and Farb, D. H. (1994) Phosphorylation factors control neurotransmitter and neuromodulator actions at the γ-aminobutyric acid type A receptor. Mol. Pharmacol. 46, 542–549.

    PubMed  CAS  Google Scholar 

  132. Kanematsu, T., Jang, I. S., Yamaguchi, T., et al. (2002) Role of the PLC-related, catalytically inactive protein p130 in GABAA receptor function. EMBO J. 21, 1004–1011.

    Article  PubMed  CAS  Google Scholar 

  133. Mu, W. and Burt, D. R. (1999) The mouse GABAA receptor α3 subunit gene and promoter. Mol. Brain Res. 73, 172–180.

    Article  PubMed  CAS  Google Scholar 

  134. McLean, P. J., Shpektor, D., Bandyopadhyay, S., Russek, S. J., and Farb, D. H. (2000) A minimal promoter for the GABAA receptor α6-subunit gene controls tissue specificity. J. Neurochem. 74, 1858–1869.

    Article  PubMed  CAS  Google Scholar 

  135. Mu, W. and Burt, D. R. (1999) Transcriptional regulation of GABAA receptor γ2 subunit gene. Mol. Brain Res. 67, 137–147.

    Article  PubMed  CAS  Google Scholar 

  136. Lüscher, B., Hauselmann, R., Leitgeb, S., Rulicke, T., and Fritschy, J. M. (1997) Neuronal subtype-specific expression directed by the GABAA receptor δ subunit gene promoter/upstream region in transgenic mice and in cultured cells. Mol. Brain Res. 51, 197–211.

    Article  PubMed  Google Scholar 

  137. Bahn, S., Jones, A., and Wisden, W. (1997) Directing gene expression to cerebellar granule cells using γ-aminobutyric acid type A receptor α6 subunit transgenes. Proc. Natl. Acad. Sci. USA 94, 9417–9421.

    Article  PubMed  CAS  Google Scholar 

  138. Jones, A., Bahn, S., Grant, A. L., Kohler, M., and Wisden, W. (1996) Characterization of a cerebellar granule cell-specific gene encoding the γ-aminobutyric acid type A receptor α6 subunit. J. Neurochem. 67, 907–916.

    Article  PubMed  CAS  Google Scholar 

  139. Bateson, A. N., Ultsch, A., and Darlison, M. G. (1995) Isolation and sequence analysis of the chicken GABAA receptor α1-subunit gene promoter. Gene 153, 243–247.

    Article  PubMed  CAS  Google Scholar 

  140. Chong, J. A., Tapia-Ramirez, J., Kim, S., et al. (1995) REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell 80, 949–957.

    Article  PubMed  CAS  Google Scholar 

  141. Schoenherr, C. J. and Anderson, D. J. (1995) The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science 267, 1360–1363.

    Article  PubMed  CAS  Google Scholar 

  142. Schoenherr, C. J., Paquette, A. J., and Anderson, D. J. (1996) Identification of potential target genes for the neuron-restrictive silencer factor. Proc. Natl. Acad. Sci. USA 93, 9881–9886.

    Article  PubMed  CAS  Google Scholar 

  143. Motejlek, K., Hauselmann, R., Leitgeb, S., and Luscher, B. (1994) BSF1, a novel brain-specific DNA-binding protein recognizing a tandemly repeated purine DNA element in the GABAA receptor δ subunit gene. J. Biol. Chem. 269, 15,265–15,273.

    CAS  Google Scholar 

  144. Ma, L., Song, L., Radoi, G. E., and Harrison, N. L. (2004) Transcriptional regulation of the mouse gene encoding the α4 subunit of the GABAA receptor. J. Biol. Chem. 279, 40,451–40,461.

    CAS  Google Scholar 

  145. Roberts, D. S., Raol, Y. H., Bandyopadhyay, S., et al. (2005) Egr3 stimulation of GABRA4 promoter activity as a mechanism for seizure-induced up-regulation of GABAA receptor α4 subunit expression. Proc. Natl. Acad. Sci. USA 102, 11,894–11,899.

    CAS  Google Scholar 

  146. Rabow, L. E., Russek, S. J., and Farb, D. H. (1995) From ion currents to genomic analysis: recent advances in GABAA receptor research. Synapse 21, 189–274.

    Article  PubMed  CAS  Google Scholar 

  147. Czajkowski, C. and Farb, D. H. (1986) Transmembrane topology and subcellular distribution of the benzodiazepine receptor. J. Neurosci. 6, 2857–2863.

    PubMed  CAS  Google Scholar 

  148. Moss, S. J. and Smart, T. G. (2001) Constructing inhibitory synapses. Nat. Rev. Neurosci. 2, 240–250.

    Article  PubMed  CAS  Google Scholar 

  149. Kittler, J. T., McAinsh, K., and Moss, S. J. (2002) Mechanisms of GABAA receptor assembly and trafficking: implications for the modulation of inhibitory neurotransmission. Mol. Neurobiol. 26, 251–268.

    Article  PubMed  CAS  Google Scholar 

  150. Czajkowski, C. and Farb, D. H. (1989) Identification of an intracellular pool of γ-aminobutyric acidA/benzodiazepine receptors en route to the cell surface of brain neurons in culture. Mol. Pharmacol. 35, 183–188.

    PubMed  CAS  Google Scholar 

  151. Borden, L. A., Czajkowski, C., Chan, C. Y., and Farb, D. H. (1984) Benzodiazepine receptor synthesis and degradation by neurons in culture. Science 226, 857–860.

    Article  PubMed  CAS  Google Scholar 

  152. Borden, L. A. and Farb, D. H. (1988) Mechanism of γ-aminobutyric acid/benzodiazepine receptor turnover in neuronal cells: evidence for nonlysosomal degradation. Mol. Pharmacol. 34, 354–362.

    PubMed  CAS  Google Scholar 

  153. Stevens, C. F. (2003) Neurotransmitter release at central synapses. Neuron 40, 381–388.

    Article  PubMed  CAS  Google Scholar 

  154. Li, Z. and Sheng, M. (2003) Some assembly required: the development of neuronal synapses. Nat. Rev. Mol. Cell. Biol. 4, 833–841.

    Article  PubMed  CAS  Google Scholar 

  155. Lüscher, B. and Keller, C. A. (2004) Regulation of GABAA receptor trafficking, channel activity, and functional plasticity of inhibitory synapses. Pharmacol. Ther. 102, 195–221.

    Article  PubMed  CAS  Google Scholar 

  156. Fritschy, J. M., Schweizer, C., Brunig, I., and Luscher, B. (2003) Pre-and post-synaptic mechanisms regulating the clustering of type A γ-aminobutyric acid receptors (GABAA receptors). Biochem. Soc. Trans. 31, 889–892.

    Article  PubMed  CAS  Google Scholar 

  157. Essrich, C., Lorez, M., Benson, J. A., Fritschy, J. M., and Luscher, B. (1998) Postsynaptic clustering of major GABAA receptor subtypes requires the γ2 subunit and gephyrin. Nat. Neurosci. 1, 563–571.

    Article  PubMed  CAS  Google Scholar 

  158. Schweizer, C., Balsiger, S., Bluethmann, H., et al. (2003) The γ2 subunit of GABAA receptors is required for maintenance of receptors at mature synapses. Mol. Cell. Neurosci. 24, 442–450.

    Article  PubMed  CAS  Google Scholar 

  159. Jacob, T. C., Bogdanov, Y. D., Magnus, C., et al. (2005) Gephyrin regulates the cell surface dynamics of synaptic GABAA receptors. J. Neurosci. 25, 10,469–10,478.

    CAS  Google Scholar 

  160. Meyer, G., Kirsch, J., Betz, H., and Langosch, D. (1995) Identification of a gephyrin binding motif on the glycine receptor β subunit. Neuron 15, 563–572.

    Article  PubMed  CAS  Google Scholar 

  161. Kneussel, M., Brandstatter, J. H., Gasnier, B., Feng, G., Sanes, J. R., and Betz, H. (2001) Gephyrin-independent clustering of postsynaptic GABAA receptor subtypes. Mol. Cell. Neurosci. 17, 973–982.

    Article  PubMed  CAS  Google Scholar 

  162. Wang, H., Bedford, F. K., Brandon, N. J., Moss, S. J., and Olsen, R. W. (1999) GABAA-receptor-associated protein links GABAA receptors and the cytoskeleton. Nature 397, 69–72.

    Article  PubMed  CAS  Google Scholar 

  163. Coyle, J. E., Qamar, S., Rajashnakar, K. R., and Nikolov, D. B. (2002) Structure of GABARAP in two conformations: implications for GABAA receptor localization and tubulin binding. Neuron 33, 63–74.

    Article  PubMed  CAS  Google Scholar 

  164. Kneussel, M., Haverkamp, S., Fuhrmann, J. C., et al. (2000) The γ-aminobutyric acid type A receptor (GABAAR)-associated protein GABARAP interacts with gephyrin but is not involved in receptor anchoring at the synapse. Proc. Natl. Acad. Sci. USA 97, 8594–8599.

    Article  PubMed  CAS  Google Scholar 

  165. Kittler, J. T., Rostaing, P., Schiavo, G., et al. (2001) The subcellular distribution of GABARAP and its ability to interact with NSF suggest a role for this protein in the intracellular transport of GABAA receptors. Mol. Cell. Neurosci. 18, 13–25.

    Article  PubMed  CAS  Google Scholar 

  166. Leil, T. A., Chen, Z. W., Chang, C. S. S., and Olsen, R. W. (2004) GABAA receptor-associated protein traffics GABAA receptors to the plasma membrane in neurons. J. Neurosci. 24, 11,429–11,438.

    Article  CAS  Google Scholar 

  167. O’Sullivan, G. A., Kneussel, M., Elazar, Z., and Betz, H. (2005) GABARAP is not essential for GABA receptor targeting to the synapse. Eur. J. Neurosci. 22, 2644–2648.

    PubMed  Google Scholar 

  168. Bedford, F. K., Kittler, J. T., Muller, E., et al. (2001) GABAA receptor cell surface number and subunit stability are regulated by the ubiquitin-like protein Plic-1. Nat. Neurosci. 4, 908–916.

    Article  PubMed  CAS  Google Scholar 

  169. Tehrani, M. H. and Barnes, E. M. Jr. (1993) Identification of GABAA/benzodiazepine receptors on clathrin-coated vesicles from rat brain. J. Neurochem. 60, 1755–1761.

    Article  PubMed  CAS  Google Scholar 

  170. Kittler, J. T., Delmas, P., Jovanovic, J. N., Brown, D. A., Smart, T. G., and Moss, S. J. (2000) Constitutive endocytosis of GABAA receptors by an association with the adaptin AP2 complex modulates inhibitory synaptic currents in hippocampal neurons. J. Neurosci. 20, 7972–7977.

    PubMed  CAS  Google Scholar 

  171. Herring, D., Huang, R., Singh, M., Robinson, L. C., Dillon, G. H., and Leidenheimer, N. J. (2003) Constitutive GABAA receptor endocytosis is dynamin-mediated and dependent on a dileucine AP2 adaptin-binding motif within the β2 subunit of the receptor. J. Biol. Chem. 278, 24,046–24,052.

    Article  CAS  Google Scholar 

  172. Kittler, J. T., Chen, G., Honing, S., et al. (2005) Phospho-dependent binding of the clathrin AP2 adaptor complex to GABAA receptors regulates the efficacy of inhibitory synaptic transmission. Proc. Natl. Acad. Sci. USA 102, 14,871–14,876.

    CAS  Google Scholar 

  173. Charych, E. I., Yu, W., Miralles, C. P., et al. (2004) The brefeldin A-inhibited GDP/GTP exchange factor 2, a protein involved in vesicular trafficking, interacts with the beta subunits of the GABA receptors. J. Neurochem. 90, 173–189.

    Article  PubMed  CAS  Google Scholar 

  174. Rathenberg, J., Kittler, J. T., and Moss, S. J. (2004) Palmitoylation regulates the clustering and cell surface stability of GABAA receptors. Mol. Cell. Neurosci. 26, 251–257.

    Article  PubMed  CAS  Google Scholar 

  175. Keller, C. A., Yuan, X., Panzanelli, P., et al. (2004) The γ2 subunit of GABAA receptors is a substrate for palmitoylation by GODZ. J. Neurosci. 24, 5881–5891.

    Article  PubMed  CAS  Google Scholar 

  176. Wan, Q., Xiong, Z. G., Man, H. Y., et al. (1997) Recruitment of functional GABAA receptors to postsynaptic domains by insulin. Nature 388, 686–690.

    Article  PubMed  CAS  Google Scholar 

  177. Wang, Q., Liu, L., Pei, L., et al. (2003) Control of synaptic strength, a novel function of Akt. Neuron 38, 915–928.

    Article  PubMed  CAS  Google Scholar 

  178. Chen, G., Kittler, J. T., Moss, S. J., and Yan, Z. (2006) Dopamine D3 receptors regulate GABAA receptor function through a phospho-dependent endocytosis mechanism in nucleus accumbens. J. Neurosci. 26, 2513–2521.

    Article  PubMed  CAS  Google Scholar 

  179. Mielke, J. G. and Wang, Y. T. (2005) Insulin exerts neuroprotection by counteracting the decrease in cell-surface GABA receptors following oxygen-glucose deprivation in cultured cortical neurons. J. Neurochem. 92, 103–113.

    Article  PubMed  CAS  Google Scholar 

  180. Brunig, I., Penschuck, S., Berninger, B., Benson, J., and Fritschy, J. M. (2001) BDNF reduces miniature inhibitory postsynaptic currents by rapid downregulation of GABAA receptor surface expression. Eur. J. Neurosci. 13, 1320–1328.

    Article  PubMed  CAS  Google Scholar 

  181. Cheng, Q. and Yeh, H. H. (2003) Brain-derived neurotrophic factor attenuates mouse cerebellar granule cell GABAA receptor-mediated responses via postsynaptic mechanisms. J. Physiol. 548, 711–721.

    Article  PubMed  CAS  Google Scholar 

  182. Henneberger, C., Juttner, R., Rothe, T., and Grantyn, R. (2002) Postsynaptic action of BDNF on GABAergic synaptic transmission in the superficial layers of the mouse superior colliculus. J. Neurophysiol. 88, 595–603.

    PubMed  CAS  Google Scholar 

  183. Tanaka, T., Saito, H., and Matsuki, N. (1997) Inhibition of GABAA synaptic responses by brain-derived neurotrophic factor (BDNF) in rat hippocampus. J. Neurosci. 17, 2959–2966.

    PubMed  CAS  Google Scholar 

  184. Hewitt, S. A. and Bains, J. S. (2006) Brain-derived neurotrophic factor silences GABA synapses onto hypothalamic neuroendocrine cells through a postsynaptic dynamin-mediated mechanism. J. Neurophysiol. 95, 2193–2198.

    Article  PubMed  CAS  Google Scholar 

  185. Mizoguchi, Y., Kanematsu, T., Hirata, M., and Nabekura, J. (2003) A rapid increase in the total number of cell surface functional GABAA receptors induced by brain-derived neurotrophic factor in rat visual cortex. J. Biol. Chem. 278, 44,097–44,102.

    Article  CAS  Google Scholar 

  186. Swanwick, C. C., Murthy, N. R., and Kapur, J. (2006) Activity-dependent scaling of GABAergic synapse strength is regulated by brain-derived neurotrophic factor. Mol. Cell. Neurosci. 31, 481–492.

    Article  PubMed  CAS  Google Scholar 

  187. Elmariah, S. B., Oh, E. J., Hughes, E. G., and Balice-Gordon, R. J. (2005) Astrocytes regulate inhibitory synapse formation via Trk-mediated modulation of postsynaptic GABAA receptors. J. Neurosci. 25, 3638–3650.

    Article  PubMed  CAS  Google Scholar 

  188. Jovanovic, J. N., Thomas, P., Kittler, J. T., Smart, T. G., and Moss, S. J. (2004) Brain-derived neurotrophic factor modulates fast synaptic inhibition by regulating GABAA receptor phosphorylation, activity, and cell-surface stability. J. Neurosci. 24, 522–530.

    Article  PubMed  CAS  Google Scholar 

  189. Palma, E., Torchia, G., Limatola, C., et al. (2005) BDNF modulates GABAA receptors microtransplanted from the human epileptic brain to Xenopus oocytes. Proc. Natl. Acad. Sci. USA 102, 1667–1672.

    Article  PubMed  CAS  Google Scholar 

  190. Chapell, R., Bueno, O. F., Alvarez-Hernandez, X., Robinson, L. C., and Leidenheimer, N. J. (1998) Activation of protein kinase C induces γ-aminobutyric acid type A receptor internalization in Xenopus oocytes. J. Biol. Chem. 273, 32,595–32,601.

    Article  CAS  Google Scholar 

  191. Connolly, C. N., Kittler, J. T., Thomas, P., et al. (1999) Cell surface stability of γ-aminobutyric acid type A receptors. Dependence on protein kinase C activity and subunit composition. J. Biol. Chem. 274, 36,565–36,572.

    Article  CAS  Google Scholar 

  192. Cinar, H. and Barnes, E. M. Jr. (2001) Clathrin-independent endocytosis of GABAA receptors in HEK 293 cells. Biochemistry 40, 14,030–14,036.

    Article  CAS  Google Scholar 

  193. Herring, D., Huang, R., Singh, M., Dillon, G. H., and Leidenheimer, N. J. (2005) PKC modulation of GABAA receptor endocytosis and function is inhibited by mutation of a dileucine motif within the receptor β2 subunit. Neuropharmacology 48, 181–194.

    Article  PubMed  CAS  Google Scholar 

  194. Thomas, P., Mortensen, M., Hosie, A. M., and Smart, T. G. (2005) Dynamic mobility of functional GABAA receptors at inhibitory synapses. Nat. Neurosci. 8, 889–897.

    PubMed  CAS  Google Scholar 

  195. Balasubramanian, S., Teissere, J. A., Raju, D. V., and Hall, R. A. (2004) Heterooligomerization between GABAA and GABAB receptors regulates GABAB receptor trafficking. J. Biol. Chem. 279, 18,840–18,850.

    CAS  Google Scholar 

  196. Marini, C., Harkin, L. A., Wallace, R. H., Mulley, J. C., Scheffer, I. E., and Berkovic, S. F. (2003) Childhood absence epilepsy and febrile seizures: a family with a GABAA receptor mutation. Brain 126, 230–240.

    Article  PubMed  Google Scholar 

  197. Harkin, L. A., Bowser, D. N., Dibbens, L. M., et al. (2002) Truncation of the GABAA receptor γ2 subunit in a family with generalized epilepsy with febrile seizures plus. Am. J. Hum. Genet. 70, 530–536.

    Article  PubMed  CAS  Google Scholar 

  198. Cossette, P., Liu, L., Brisebois, K., et al. (2002) Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nat. Genet. 31, 184–189.

    Article  PubMed  CAS  Google Scholar 

  199. Baulac, S., Huberfeld, G., Gourfinkel-An, I., et al. (2001) First genetic evidence of GABAA receptor dysfunction in epilepsy: a mutation in the γ2-subunit gene. Nat. Genet. 28, 46–48.

    Article  PubMed  CAS  Google Scholar 

  200. Gallagher, M. J., Shen, W., Song, L., and Macdonald, R. L. (2005) Endoplasmic reticulum retention and associated degradation of a GABAA receptor epilepsy mutation that inserts an aspartate in the M3 transmembrane segment of the α1 subunit. J. Biol. Chem. 280, 37,995–38,004.

    CAS  Google Scholar 

  201. Gallagher, M. J., Song, L., Arain, F., and Macdonald, R. L. (2004) The juvenile myoclonic epilepsy GABAA receptor α1 subunit mutation A322D produces asymmetrical, subunit position-dependent reduction of heterozygous receptor currents and α1 subunit protein expression. J. Neurosci. 24, 5570–5578.

    Article  PubMed  CAS  Google Scholar 

  202. Kang, J. Q., Shen, W., and Macdonald, R. L. (2006) Why does fever trigger febrile seizures? GABAA receptor γ2 subunit mutations associated with idiopathic generalized epilepsies have temperature-dependent trafficking deficiencies. J. Neurosci. 26, 2590–2597.

    Article  PubMed  CAS  Google Scholar 

  203. Zhang, G., Raol, Y. H., Hsu, F. C., Coulter, D. A., and Brooks-Kayal, A. R. (2004) Effects of status epilepticus on hippocampal GABAA receptors are age-dependent. Neuroscience 125, 299–303.

    Article  PubMed  CAS  Google Scholar 

  204. Ni, H., Jiang, Y. W., Bo, T., Wang, J. M., Pan, H., and Wu, X. R. (2004) Long-term effects of neonatal seizures on subsequent N-methyl-D-aspartate receptor-1 and γ-aminobutyric acid receptor A α1 receptor expression in hippocampus of the Wistar rat. Neurosci. Lett. 368, 254–257.

    Article  PubMed  CAS  Google Scholar 

  205. Ni, H., Jiang, Y. W., Bo, T., Wang, J. M., and Wu, X. R. (2005) c-Fos, N-methyl-d-aspartate receptor 2C, GABAA α1 immonoreactivity, seizure latency and neuronal injury following single or recurrent neonatal seizures in hippocampus of Wistar rat. Neurosci. Lett. 380, 149–154.

    Article  PubMed  CAS  Google Scholar 

  206. Meguro, R., Lu, J., Gavrilovici, C., and Poulter, M. O. (2004) Static, transient and permanent organization of GABA receptor expression in calbindin-positive interneurons in response to amygdala kindled seizures. J. Neurochem. 91, 144–154.

    Article  PubMed  CAS  Google Scholar 

  207. Houser, C. R. and Esclapez, M. (2003) Downregulation of the α5 subunit of the GABAA receptor in the pilocarpine model of temporal lobe epilepsy. Hippocampus 13, 633–645.

    Article  PubMed  CAS  Google Scholar 

  208. Kapur, J. and Coulter, D. A. (1995) Experimental status epilepticus alters γ-aminobutyric acid type A receptor function in CA1 pyramidal neurons. Ann. Neurol. 38, 893–900.

    Article  PubMed  CAS  Google Scholar 

  209. Kapur, J., Lothman, E. W., and Delorenzo, R. J. (1994) Loss of GABAA receptors during partial status epilepticus. Neurology 44, 2407–2408.

    PubMed  CAS  Google Scholar 

  210. Kokaia, M., Pratt, G. D., Elmer, E., et al. (1994) Biphasic differential changes of GABAA receptor subunit mRNA levels in dentate gyrus granule cells following recurrent kindling-induced seizures. Mol. Brain. Res. 23, 323–332.

    Article  PubMed  CAS  Google Scholar 

  211. Kamphuis, W., De Rijk, T. C., and Lopes da Silva, F. H. (1995) Expression of GABAA receptor subunit mRNAs in hippocampal pyramidal and granular neurons in the kindling model of epileptogenesis: an in situ hybridization study. Mol. Brain. Res. 31, 33–47.

    Article  PubMed  CAS  Google Scholar 

  212. Brooks-Kayal, A. R., Shumate, M. D., Jin, H., Rikhter, T. Y., and Coulter, D. A. (1998) Selective changes in single cell GABAA receptor subunit expression and function in temporal lobe epilepsy. Nat. Med. 4, 1166–1172.

    Article  PubMed  CAS  Google Scholar 

  213. Poulter, M. O., Brown, L. A., Tynan, S., Willick, G., William, R., and McIntyre, D. C. (1999) Differential expression of α1, α2, α3, and α5 GABAA receptor subunits in seizure-prone and seizure-resistant rat models of temporal lobe epilepsy. J. Neurosci. 19, 4654–4661.

    PubMed  CAS  Google Scholar 

  214. Schwarzer, C., Tsunashima, K., Wanzenbock, C., Fuchs, K., Sieghart, W., and Sperk, G. (1997) GABAA receptor subunits in the rat hippocampus II: altered distribution in kainic acid-induced temporal lobe epilepsy. Neuroscience 80, 1001–1017.

    Article  PubMed  CAS  Google Scholar 

  215. Tsunashima, K., Schwarzer, C., Kirchmair, E., Sieghart, W., and Sperk, G. (1997) GABAA receptor subunits in the rat hippocampus III: altered messenger RNA expression in kainic acid-induced epilepsy. Neuroscience 80, 1019–1032.

    Article  PubMed  CAS  Google Scholar 

  216. Nusser, Z., Hajos, N., Somogyi, P., and Mody, I. (1998) Increased number of synaptic GABAA receptors underlies potentiation at hippocampal inhibitory synapses. Nature 395, 172–177.

    Article  PubMed  CAS  Google Scholar 

  217. Kumar, S., Fleming, R. L., and Morrow, A. L. (2004) Ethanol regulation of γ-aminobutyric acid A receptors: genomic and nongenomic mechanisms. Pharmacol. Ther. 101, 211–226.

    Article  PubMed  CAS  Google Scholar 

  218. Ticku, M. K. and Burch, T. (1980) Alterations in γ-aminobutyric acid receptor sensitivity following acute and chronic ethanol treatments. J. Neurochem. 34, 417–423.

    Article  PubMed  CAS  Google Scholar 

  219. Kumar, S., Sieghart, W., and Morrow, A. L. (2002) Association of protein kinase C with GABAA receptors containing α1 and α4 subunits in the cerebral cortex: selective effects of chronic ethanol consumption. J. Neurochem. 82, 110–117.

    Article  PubMed  CAS  Google Scholar 

  220. Kumar, S., Kralic, J. E., O’Buckley, T. K., Grobin, A. C., and Morrow, A. L. (2003) Chronic ethanol consumption enhances internalization of α1 subunit-containing GABAA receptors in cerebral cortex. J. Neurochem. 86, 700–708.

    Article  PubMed  CAS  Google Scholar 

  221. Follesa, P., Mancuso, L., Biggio, F., et al. (2003) γ-hydroxybutyric acid and diazepam antagonize a rapid increase in GABAA receptors α4 subunit mRNA abundance induced by ethanol withdrawal in cerebellar granule cells. Mol. Pharmacol. 63, 896–907.

    Article  PubMed  CAS  Google Scholar 

  222. Devaud, L. L., Smith, F. D., Grayson, D. R., and Morrow, A. L. (1995) Chronic ethanol consumption differentially alters the expression of γ-aminobutyric acidA receptor subunit mRNAs in rat cerebral cortex: competitive, quantitative reverse transcriptase-polymerase chain reaction analysis. Mol. Pharmacol. 48, 861–868.

    PubMed  CAS  Google Scholar 

  223. Devaud, L. L., Fritschy, J. M., Sieghart, W., and Morrow, A. L. (1997) Bidirectional alterations of GABAA receptor subunit peptide levels in rat cortex during chronic ethanol consumption and withdrawal. J. Neurochem. 69, 126–130.

    Article  PubMed  CAS  Google Scholar 

  224. Grobin, A. C., Papadeas, S. T., and Morrow, A. L. (2000) Regional variations in the effects of chronic ethanol administration on GABAA receptor expression: potential mechanisms. Neurochem. Int. 37, 453–461.

    Article  PubMed  CAS  Google Scholar 

  225. Mhatre, M. C. and Ticku, M. K. (1992) Chronic ethanol administration alters γ-aminobutyric acidA receptor gene expression. Mol. Pharmacol. 42, 415–422.

    PubMed  CAS  Google Scholar 

  226. Mhatre, M. C., Pena, G., Sieghart, W., and Ticku, M. K. (1993) Antibodies specific for GABAA receptor α subunits reveal that chronic alcohol treatment down-regulates α-subunit expression in rat brain regions. J. Neurochem. 61, 1620–1625.

    Article  PubMed  CAS  Google Scholar 

  227. Matthews, D. B., Devaud, L. L., Fritschy, J. M., Sieghart, W., and Morrow, A. L. (1998) Differential regulation of GABAA receptor gene expression by ethanol in the rat hippocampus versus cerebral cortex. J. Neurochem. 70, 1160–1166.

    Article  PubMed  CAS  Google Scholar 

  228. Follesa, P., Biggio, F., Caria, S., Gorini, G., and Biggio, G. (2004) Modulation of GABAA receptor gene expression by allopregnanolone and ehtanol. Eur. J. Pharmacol. 500, 413–425.

    Article  PubMed  CAS  Google Scholar 

  229. Follesa, P., Mostallino, M. C., Biggio, F., et al. (2005) Distinct patterns of expression and regulation of GABA receptors containing the δ subunit in cerebellar granule and hippocampal neurons. J. Neurochem. 94, 659–671.

    Article  PubMed  CAS  Google Scholar 

  230. Sanna, E., Mostallino, M. C., Busonero, F., et al. (2003) Changes in GABAA receptor gene expression associated with selective alterations in receptor function and pharmacology after ethanol withdrawal. J. Neurosci. 23, 11,711–11,724.

    CAS  Google Scholar 

  231. Mahmoudi, M., Kang, M. H., Tillakaratne, N., Tobin, A. J., and Olsen, R. W. (1997) Chronic intermittent ethanol treatment in rats increases GABAA receptor α4 subunit expression: possible relevance to alcohol dependence. J. Neurochem. 68, 2485–2492.

    Article  PubMed  CAS  Google Scholar 

  232. Cagetti, E., Liang, J., Spigelman, I., and Olsen, R. W. (2003) Withdrawal from chronic intermittent ethanol treatment changes subunit composition, reduces synaptic function, and decreases behavioral responses to positive allosteric modulators of GABAA receptors. Mol. Pharmacol. 63, 53–64.

    Article  PubMed  CAS  Google Scholar 

  233. Follesa, P., Biggio, F., Mancuso, L., et al. (2004) Ethanol withdrawal-induced up-regulation of the α2 subunit of the GABAA receptor and its prevention by diazepam or γ-hydroxybutyric acid. Mol. Brain. Res. 120, 130–137.

    Article  PubMed  CAS  Google Scholar 

  234. Saba, L., Porcella, A., Sanna, A., et al. (2005) Five mutations in the GABAA α6 gene 5′ flanking region are associated with a reduced basal and ethanol-induced α6 upregulation in mutated Sardinian alcohol non-preferring rats. Mol. Brain Res. 137, 252–257.

    Article  PubMed  CAS  Google Scholar 

  235. Wallner, M., Hanchar, H. J., and Olsen, R. W. (2003) Ethanol enhances α4β3δ and α6β3δ γ-aminobutyric acid type A receptors at low concentrations known to affect humans. Proc. Natl. Acad. Sci. USA 100, 15,218–15,223.

    Article  CAS  Google Scholar 

  236. Wei, W., Faria, L. C., and Mody, I. (2004) Low ethanol concentrations selectively augment the tonic inhibition mediated by δ subunit-containing GABAA receptors in hippocampal neurons. J. Neurosci. 24, 8379–8382.

    Article  PubMed  CAS  Google Scholar 

  237. Lewis, D. A., Hashimoto, T., and Volk, D. W. (2005) Cortical inhibitory neurons and schizophrenia. Nat. Rev. Neurosci. 6, 312–324.

    Article  PubMed  CAS  Google Scholar 

  238. Ohnuma, T., Augood, S. J., Arai, H., McKenna, P. J., and Emson, P. C. (1999) Measurement of GABAergic parameters in the prefrontal cortex in schizophrenia: focus on GABA content, GABAA receptor α1 subunit messenger RNA and human GABA transporter-1 (HGAT-1) messenger RNA expression. Neuroscience. 93, 441–448.

    Article  PubMed  CAS  Google Scholar 

  239. Benes, F. M., Vincent, S. L., Marie, A., and Khan, Y. (1996) Up-regulation of GABAA receptor binding on neurons of the prefrontal cortex in schizophrenic subjects. Neuroscience. 75, 1021–1031.

    Article  PubMed  CAS  Google Scholar 

  240. Deng, C. and Huang, X. F. (2006) Increased density of GABAA receptors in the superior temporal gyrus in schizophrenia. Exp. Brain Res. 168, 587–590.

    Article  PubMed  CAS  Google Scholar 

  241. Perlstein, W. M., Carter, C. S., Noll, D. C., and Cohen, J. D. (2001) Relation of prefrontal cortex dysfunction to working memory and symptoms in schizophrenia. Am. J. Psychiatry. 158, 1105–1113.

    Article  PubMed  CAS  Google Scholar 

  242. Wassef, A., Baker, J., and Kochan, L. D. (2003) GABA and schizophrenia: a review of basic science and clinical studies. J. Clin. Psychopharmacol. 23, 601–640.

    Article  PubMed  CAS  Google Scholar 

  243. Cryan, J. F. and Kaupmann, K. (2005) Don’t worry ‘B’ happy!: a role for GABAB receptors in anxiety and depression. Trends Pharmacol. Sci. 26, 36–43.

    Article  PubMed  CAS  Google Scholar 

  244. Gassmann, M., Shaban, H., Vigot, R., et al. (2004) Redistribution of GABAB(1) protein and atypical GABAB responses in GABAB(2)-deficient mice. J. Neurosci. 24, 6086–6097.

    Article  PubMed  CAS  Google Scholar 

  245. Galvez, T., Parmentier, M. L., Joly, C., et al. (1999) Mutagenesis and modeling of the GABAB receptor extracellular domain support a venus flytrap mechanism for ligand binding. J. Biol. Chem. 274, 13,362–13,369.

    Article  CAS  Google Scholar 

  246. Malitschek, B., Schweizer, C., Keir, M., et al. (1999) The N-terminal domain of γ-aminobutyric acidB receptors is sufficient to specify agonist and antagonist binding. Mol. Pharmacol. 56, 448–454.

    PubMed  CAS  Google Scholar 

  247. Pfaff, T., Malitschek, B., Kaupmann, K., et al. (1999) Alternative splicing generates a novel isoform of the rat metabotropic GABABR1 receptor. Eur. J. Neurosci. 11, 2874–2882.

    Article  PubMed  CAS  Google Scholar 

  248. Green, A., Walls, S., Wise, A., Green, R. H., Martin, A. K., and Marshall, F. H. (2000) Characterization of [3H]-CGP54626A binding to heterodimeric GABAB receptors stably expressed in mammalian cells. Br. J. Pharmacol. 131, 1766–1774.

    Article  PubMed  CAS  Google Scholar 

  249. Margeta-Mitrovic, M., Jan, Y. N., and Jan, L. Y. (2000) A trafficking checkpoint controls GABAB receptor heterodimerization. Neuron. 27, 97–106.

    Article  PubMed  CAS  Google Scholar 

  250. Calver, A. R., Robbins, M. J., Cosio, C., et al. (2001) The C-terminal domains of the GABAB receptor subunits mediate intracellular trafficking but are not required for receptor signaling. J. Neurosci. 21, 1203–1210.

    PubMed  CAS  Google Scholar 

  251. Pagano, A., Rovelli, G., Mosbacher, J., et al. (2001) C-terminal interaction is essential for surface trafficking but not for heteromeric assembly of GABAB receptors. J. Neurosci. 21, 1189–1202.

    PubMed  CAS  Google Scholar 

  252. Grunewald, S., Schupp, B. J., Ikeda, S. R., et al. (2002) Importance of the γ-aminobutyric acidB receptor C-termini for G-protein coupling. Mol. Pharmacol. 61, 1070–1080.

    Article  PubMed  CAS  Google Scholar 

  253. Goei, V. L., Choi, J., Ahn, J., Bowlus, C. L., Raha-Chowdhury, R., and Gruen, J. R. (1998) Human γ-aminobutyric acid B receptor gene: complementary DNA cloning, expression, chromosomal location, and genomic organization. Biol. Psychiatry 44, 659–666.

    Article  PubMed  CAS  Google Scholar 

  254. Grifa, A., Totaro, A., Rommens, J. M., et al. (1998) GABA (γ-amino-butyric acid) neurotransmission: identification and fine mapping of the human GABAB receptor gene. Biochem. Biophys. Res. Commun. 250, 240–245.

    Article  PubMed  CAS  Google Scholar 

  255. Peters, H. C., Kammer, G., Volz, A., et al. (1998) Mapping, genomic structure, and polymorphisms of the human GABABR1 receptor gene: evaluation of its involvement in idiopathic generalized epilepsy. Neurogenetics. 2, 47–54.

    Article  PubMed  CAS  Google Scholar 

  256. Lander, E. S., Linton, L. M., Birren, B., et al. (2001) Initial sequencing and analysis of the human genome. Nature. 409, 860–921.

    Article  PubMed  CAS  Google Scholar 

  257. Modrek, B. and Lee, C. (2002) A genomic view of alternative splicing. Nat. Genet. 30, 13–19.

    Article  PubMed  CAS  Google Scholar 

  258. Trinklein, N. D., Aldred, S. J., Saldanha, A. J., and Myers, R. M. (2003) Identification and functional analysis of human transcriptional promoters. Genome Res. 13, 308–312.

    Article  PubMed  CAS  Google Scholar 

  259. Landry, J. R., Mager, D. L., and Wilhelm, B. T. (2003) Complex controls: the role of alternative promoters in mammalian genomes. Trends Genet. 19, 640–648.

    Article  PubMed  CAS  Google Scholar 

  260. Ayoubi, T. A. and Van De Ven, W. J. (1996) Regulation of gene expression by alternative promoters. FASEB J. 10, 453–460.

    PubMed  CAS  Google Scholar 

  261. Blein, S., Hawrot, E., and Barlow, P. (2000) The metabotropic GABA receptor: molecular insights and their functional consequences. Cell. Mol. Life Sci. 57, 635–650.

    Article  PubMed  CAS  Google Scholar 

  262. Schwarz, D. A., Barry, G., Eliasof, S. D., Petroski, R. E., Conlon, P. J., and Maki, R. A. (2000) Characterization of γ-aminobutyric acid receptor GABAB(1e), a GABAB(1) splice variant encoding a truncated receptor. J. Biol. Chem. 275, 32174–32181.

    Article  PubMed  CAS  Google Scholar 

  263. Isomoto, S., Kaibara, M., Sakurai-Yamashita, Y., et al. (1998) Cloning and tissue distribution of novel splice variants of the rat GABAB receptor. Biochem. Biophys. Res. Commun. 253, 10–15.

    Article  PubMed  CAS  Google Scholar 

  264. Wei, K., Eubanks, J. H., Francis, J., Jia, Z., and Snead, O. C. 3rd (2001) Cloning and tissue distribution of a novel isoform of the rat GABABR1 receptor subunit. Neuroreport. 12, 833–837.

    Article  PubMed  CAS  Google Scholar 

  265. Wei, K., Jia, Z., Wang, Y. T., Yang, J., Liu, C. C., and Snead, O. C. 3rd (2001) Cloning and characterization of a novel variant of rat GABABR1 with a truncated C-terminus. Mol. Brain Res. 89, 103–110.

    Article  PubMed  CAS  Google Scholar 

  266. Clark, J. A., Mezey, E., Lam, A. S., and Bonner, T. I. (2000) Distribution of the GABAB receptor subunit gb2 in rat CNS. Brain Res. Rev. 860, 41–52.

    CAS  Google Scholar 

  267. Owens, D. F. and Kriegstein, A. R. (2002) Is there more to GABA than synaptic inhibition? Nat. Rev. Neurosci. 3, 715–727.

    Article  PubMed  CAS  Google Scholar 

  268. Ben-Ari, Y. (2002) Excitatory actions of GABA during development: the nature of the nurture. Nat. Rev. Neurosci. 3, 728–739.

    Article  PubMed  CAS  Google Scholar 

  269. Gaiarsa, J. L., McLean, H., Congar, P., et al. (1995) Postnatal maturation of γ-aminobutyric acidA and B-mediated inhibition in the CA3 hippocampal region of the rat. J. Neurobiol. 26, 339–349.

    Article  PubMed  CAS  Google Scholar 

  270. McLean, H. A., Caillard, O., Khazipov, R., Ben-Ari, Y., and Gaiarsa, J. L. (1996) Spontaneous release of GABA activates GABAB receptors and controls network activity in the neonatal rat hippocampus. J. Neurophysiol. 76, 1036–1046.

    PubMed  CAS  Google Scholar 

  271. Lopez-Bendito, G., Shigemoto, R., Kulik, A., Vida, I., Fairen, A., and Lujan, R. (2004) Distribution of metabotropic GABA receptor subunits GABAB1a/b and GABAB2 in the rat hippocampus during prenatal and postnatal development. Hippocampus 14, 836–848.

    Article  PubMed  CAS  Google Scholar 

  272. Côrrea, S. A., Munton, R., Nishimune, A., Fitzjohn, S., and Henley, J. M. (2004) Development of GABAB subunits and functional GABAB receptors in rat cultured hippocampal neurons. Neuropharmacology 47, 475–484.

    Article  PubMed  CAS  Google Scholar 

  273. Fritschy, J. M., Meskenaite, V., Weinmann, O., Honer, M., Benke, D., and Mohler, H. (1999) GABAB receptor splice variants GB1a and GB1b in rat brain: developmental regulation, cellular distribution and extrasynaptic localization. Eur. J. Neurosci. 11, 761–768.

    Article  PubMed  CAS  Google Scholar 

  274. Fritschy, J. M., Sidler, C., Parpan, F., et al. (2004) Independent maturation of the GABAB receptor subunits GABAB1 and GABAB2 during postnatal development in rodent brain. J. Comp. Neurol. 477, 235–252.

    Article  PubMed  CAS  Google Scholar 

  275. Malitschek, B., Ruegg, D., Heid, J., et al. (1998) Developmental changes of agonist affinity at GABABR1 receptor variants in rat brain. Mol. Cell. Neurosci. 12, 56–64.

    Article  PubMed  CAS  Google Scholar 

  276. Kulik, A., Vida, I., Lujan, R., et al. (2003) Subcellular localization of metabotropic GABAB receptor subunits GABAB1a/b and GABAB2 in the rat hippocampus. J. Neurosci. 23, 11,026–11,035.

    CAS  Google Scholar 

  277. Liang, F., Hatanaka, Y., Saito, H., Yamamori, T., and Hashikawa, T. (2000) Differential expression of γ-aminobutyric acid type B receptor-1a and-1b mRNA variants in GABA and non-GABAergic neurons of the rat brain. J. Comp. Neurol. 416, 475–495.

    Article  PubMed  CAS  Google Scholar 

  278. Martin, S. C., Russek, S. J., and Farb, D. H. (1999) Molecular identification of the human GABABR2: cell surface expression and coupling to adenylyl cyclase in the absence of GABABR1. Mol. Cell Neurosci. 13, 180–191.

    Article  PubMed  CAS  Google Scholar 

  279. Ng, T. K. and Yung, K. K. (2001) Differential expression of GABABR1 and GABABR2 receptor immunoreactivity in neurochemically identified neurons of the rat neostriatum. J. Comp. Neurol. 433, 458–470.

    Article  PubMed  CAS  Google Scholar 

  280. Waldvogel, H. J., Billinton, A., White, J. H., Emson, P. C., and Faull, R. L. (2004) Comparative cellular distribution of GABAA and GABAB receptors in the human basal ganglia: immunohistochemical colocalization of the α1 subunit of the GABAA receptor, and the GABABR1 and GABABR2 receptor subunits. J. Comp. Neurol. 470, 339–356.

    Article  PubMed  CAS  Google Scholar 

  281. Panzanelli, P., Lopez-Bendito, G., Lujan, R., and Sassoe-Pognetto, M. (2004) Localization and developmental expression of GABAB receptors in the rat olfactory bulb. J. Neurocytol. 33, 87–99.

    Article  PubMed  CAS  Google Scholar 

  282. Yung, K. K., Ng, T. K., and Wong, C. K. (1999) Subpopulations of neurons in the rat neostriatum display GABABR1 receptor immunoreactivity. Brain Res. 830, 345–352.

    Article  PubMed  CAS  Google Scholar 

  283. Charara, A., Heilman, T. C., Levey, A. I., and Smith, Y. (2000) Pre-and postsynaptic localization of GABAB receptors in the basal ganglia in monkeys. Neuroscience. 95, 127–140.

    Article  PubMed  CAS  Google Scholar 

  284. Knight, A. R. and Bowery, N. G. (1996) The pharmacology of adenylyl cyclase modulation by GABAB receptors in rat brain slices. Neuropharmacology. 35, 703–712.

    Article  PubMed  CAS  Google Scholar 

  285. Wise, A., Green, A., Main, M. J., Wilson, R., Fraser, N., and Marshall, F. H. (1999) Calcium sensing properties of the GABAB receptor. Neuropharmacology. 38, 1647–1656.

    Article  PubMed  CAS  Google Scholar 

  286. Zhu, X. Z. and Chuang, D. M. (1987) Modulation of calcium uptake and D-aspartate release by GABAB receptors in cultured cerebellar granule cells. Eur. J. Pharmacol. 141, 401–408.

    Article  PubMed  CAS  Google Scholar 

  287. De Erausquin, G., Brooker, G., Costa, E., and Wojcik, W. J. (1992) Stimulation of high affinity γ-aminobutyric acidB receptors potentiates the depolarization-induced increase of intraneuronal ionized calcium content in cerebellar granule neurons. Mol. Pharmacol. 42, 407–414.

    PubMed  Google Scholar 

  288. Park, S. K., An, S. J., Hwang, I. K., et al. (2004) Altered GABAB receptor immunoreactivity in the gerbil hippocampus induced by baclofen and phaclofen, not seizure activity. Neurosci. Res. 49, 405–416.

    Article  PubMed  CAS  Google Scholar 

  289. Lehmann, A., Mattsson, J. P., Edlund, A., Johansson, T., and Ekstrand, A. J. (2003) Effects of repeated administration of baclofen to rats on GABAB receptor binding sites and subunit expression in the brain. Neurochem. Res. 28, 387–393.

    Article  PubMed  CAS  Google Scholar 

  290. Sands, S. A., McCarson, K. E., and Enna, S. J. (2003) Differential regulation of GABAB receptor subunit expression and function. J. Pharmacol. Exp. Ther. 305, 191–196.

    Article  PubMed  CAS  Google Scholar 

  291. Ghorbel, M. T., Becker, K. G., and Henley, J. M. (2005) Profile of changes in gene expression in cultured hippocampal neurones evoked by the GABAB receptor agonist baclofen. Physiol. Genomics. 22, 93–98.

    Article  PubMed  CAS  Google Scholar 

  292. Zhou, W., Mailloux, A. W., and McGinty, J. F. (2005) Intracerebral baclofen administration decreases amphetamine-induced behavior and neuropeptide gene expression in the striatum. Neuropsychopharmacology 30, 880–890.

    Article  PubMed  CAS  Google Scholar 

  293. Zhou, W., Mailloux, A. W., Jung, B. J., Edmunds, H. S. Jr., and McGinty, J. F. (2004) GABAB receptor stimulation decreases amphetamine-induced behavior and neuropeptide gene expression in the striatum. Brain Res. 1004, 18–28.

    Article  PubMed  CAS  Google Scholar 

  294. Herdegen, T. and Leah, J. D. (1998) Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. Brain Res. Rev. 28, 370–490.

    Article  PubMed  CAS  Google Scholar 

  295. Hai, T. and Hartman, M. G. (2001) The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: activating transcription factor proteins and homeostasis. Gene. 273, 1–11.

    Article  PubMed  CAS  Google Scholar 

  296. De Cesare, D. and Sassone-Corsi, P. (2000) Transcriptional regulation by cyclic AMP-responsive factors. Prog. Nucleic Acid Res. Mol. Biology 64, 343–369.

    Article  Google Scholar 

  297. Barthel, F., Kienlen Campard, P., Demeneix, B. A., Feltz, P., and Loeffler, J. P. (1996) GABAB receptors negatively regulate transcription in cerebellar granular neurons through cyclic AMP responsive element binding protein-dependent mechanisms. Neuroscience. 70, 417–427.

    Article  PubMed  CAS  Google Scholar 

  298. Ito, Y., Ishige, K., Zaitsu, E., Anzai, K., and Fukuda, H. (1995) γ-Hydroxybutyric acid increases intracellular Ca2( concentration and nuclear cyclic AMP-responsive element-and activator protein 1 DNA-binding activities through GABAB receptor in cultured cerebellar granule cells. J. Neurochem. 65, 75–83.

    Article  PubMed  CAS  Google Scholar 

  299. Helm, K. A., Haberman, R. P., Dean, S. L., et al. (2005) GABAB receptor antagonist SGS742 improves spatial memory and reduces protein binding to the cAMP response element (CRE) in the hippocampus. Neuropharmacology 48, 956–964.

    Article  PubMed  CAS  Google Scholar 

  300. Nehring, R. B., Horikawa, H. P., El Far, O., et al. (2000) The metabotropic GABAB receptor directly interacts with the activating transcription factor 4 (ATF-4). J. Biol. Chem. 275, 35,185–35,191.

    Article  CAS  Google Scholar 

  301. White, J. H., McIllhinney, R. A., Wise, A., et al. (2000) The GABAB receptor interacts directly with the related transcription factors CREB2 and ATFx. Proc. Natl. Acad. Sci. USA 97, 13,967–13,972.

    CAS  Google Scholar 

  302. Vernon, E., Meyer, G., Pickard, L., et al. (2001) GABAB receptors couple directly to the transcription factor ATF4. Mol. Cell Neurosci. 17, 637–645.

    Article  PubMed  CAS  Google Scholar 

  303. Sauter, K., Grampp, T., Fritschy, J. M., et al. (2005) Subtype-selective interaction with the transcription factor CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) regulates cell surface expression of GABAB receptors. J. Biol. Chem. 280, 33,566–33,572.

    Article  CAS  Google Scholar 

  304. Bartsch, D., Ghirardi, M., Skehel, P. A., et al. (1995) Aplysia CREB2 represses long-term facilitation: relief of repression converts transient facilitation into long-term functional and structural change. Cell. 83, 979–992.

    Article  PubMed  CAS  Google Scholar 

  305. Chen, A., Muzzio, I. A., Malleret, G., et al. (2003) Inducible enhancement of memory storage and synaptic plasticity in transgenic mice expressing an inhibitor of ATF4 (CREB-2) and C/EBP proteins. Neuron 39, 655–669.

    Article  PubMed  CAS  Google Scholar 

  306. Yin, J. C., Wallach, J. S., Del Vecchio, M., et al. (1994) Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell 79, 49–58.

    Article  PubMed  CAS  Google Scholar 

  307. Ishige, K., Aizawa, M., Ito, Y., and Fukuda, H. (1996) γ-Butyrolactone-induced absence-like seizures increase nuclear CRE-and AP-1 DNA-binding activities in mouse brain. Neuropharmacology 35, 45–55.

    Article  PubMed  CAS  Google Scholar 

  308. Ishige, K., Endo, H., Saito, H., and Ito, Y. (2001) Repeated administration of CGP 46381, a γ-aminobutyric acidB antagonist, and ethosuximide suppresses seizure-associated cyclic adenosine 3′5′ monophosphate response element-and activator protein-1 DNA-binding activities in lethargic (lh/lh) mice. Neurosci. Lett. 297, 207–210.

    Article  PubMed  CAS  Google Scholar 

  309. Ishige, K., Ito, Y., and Fukuda, H. (1999) Characterization of absence seizure-dependent cyclic AMP responsive element-and activator protein 1 DNA-binding activities in lethargic (lh/lh) mice. Neurosci. Lett. 262, 53–56.

    Article  PubMed  CAS  Google Scholar 

  310. Wetherington, J. P. and Lambert, N. A. (2002) GABAB receptor activation desensitizes postsynaptic GABAB and A1 adenosine responses in rat hippocampal neurones. J. Physiol. 544, 459–467.

    Article  PubMed  CAS  Google Scholar 

  311. Fairfax, B. P., Pitcher, J. A., Scott, M. G., et al. (2004) Phosphorylation and chronic agonist treatment atypically modulate GABAB receptor cell surface stability. J. Biol. Chem. 279, 12,565–12,573.

    CAS  Google Scholar 

  312. Dario, A., Scamoni, C., Picano, M., Casagrande, F., and Tomei, G. (2004) Pharmacological complications of the chronic baclofen infusion in the severe spinal spasticity. Personal experience and review of the literature. J. Neurosurg. Sci. 48, 177–181.

    PubMed  CAS  Google Scholar 

  313. Coffey, J. R., Cahill, D., Steers, W., et al. (1993) Intrathecal baclofen for intractable spasticity of spinal origin: results of a long-term multicenter study. J. Neurosurg. 78, 226–232.

    PubMed  CAS  Google Scholar 

  314. Penn, R. D. and Kroin, J. S. (1987) Long-term intrathecal baclofen infusion for treatment of spasticity. J. Neurosurg. 66, 181–185.

    Article  PubMed  CAS  Google Scholar 

  315. Nielsen, J. F., Hansen, H. J., Sunde, N., and Christensen, J. J. (2002) Evidence of tolerance to baclofen in treatment of severe spasticity with intrathecal baclofen. Clin. Neurol. Neurosurg. 104, 142–145.

    Article  PubMed  Google Scholar 

  316. McCarson, K. E. and Enna, S. J. (1999) Nociceptive regulation of GABAB receptor gene expression in rat spinal cord. Neuropharmacology 38, 1767–1773.

    Article  PubMed  CAS  Google Scholar 

  317. Sands, S. A., Reisman, S. A., and Enna, S. J. (2004) Effect of antidepressants on GABAB receptor function and subunit expression in rat hippocampus. Biochem. Pharmacol. 68, 1489–1495.

    Article  PubMed  CAS  Google Scholar 

  318. McCarson, K. E., Duric, V., Reisman, S. A., Winter, M., and Enna, S. J. (2006) GABAB receptor function and subunit expression in the rat spinal cord as indicators of stress and the antinociceptive response to antidepressants. Brain Res. 1068, 109–117.

    Article  PubMed  CAS  Google Scholar 

  319. Sands, S. A., McCarson, K. E., and Enna, S. J. (2004) Relationship between the antinociceptive response to desipramine and changes in GABAB receptor function and subunit expression in the dorsal horn of the rat spinal cord. Biochem. Pharmacol. 67, 743–749.

    Article  PubMed  CAS  Google Scholar 

  320. Francis, J., Jung, B. P., Zhang, G., et al. (2001) Perforant pathway kindling transiently induces the mRNA expression of GABAB receptor subtypes R1A and R2 in the adult rat hippocampus. Mol. Brain Res. 91, 159–162.

    Article  PubMed  CAS  Google Scholar 

  321. Furtinger, S., Bettler, B., and Sperk, G. (2003) Altered expression of GABAB receptors in the hippocampus after kainic-acid-induced seizures in rats. Mol. Brain Res. 113, 107–115.

    Article  PubMed  CAS  Google Scholar 

  322. Straessle, A., Loup, F., Arabadzisz, D., Ohning, G. V., and Fritschy, J. M. (2003) Rapid and long-term alterations of hippocampal GABAB receptors in a mouse model of temporal lobe epilepsy. Eur. J. Neurosci. 18, 2213–2226.

    Article  PubMed  Google Scholar 

  323. Billinton, A., Baird, V. H., Thom, M., Duncan, J. S., Upton, N., and Bowery, N. G. (2001) GABAB1 mRNA expression in hippocampal sclerosis associated with human temporal lobe epilepsy. Mol. Brain Res. 86, 84–89.

    Article  PubMed  CAS  Google Scholar 

  324. Princivalle, A. P., Duncan, J. S., Thom, M., and Bowery, N. G. (2003) GABAB1a, GABAB1b and GABAB2 mRNA variants expression in hippocampus resected from patients with temporal lobe epilepsy. Neuroscience 122, 975–984.

    Article  PubMed  CAS  Google Scholar 

  325. Bading, H. (1999) Nuclear calcium-activated gene expression: possible roles in neuronal plasticity and epileptogenesis. Epilepsy Res. 36, 225–231.

    Article  PubMed  CAS  Google Scholar 

  326. Park, S. A., Kim, T. S., Choi, K. S., Park, H. J., Heo, K., and Lee, B. I. (2003) Chronic activation of CREB and p90RSK in human epileptic hippocampus. Exp. Mol. Med. 35, 365–370.

    PubMed  CAS  Google Scholar 

  327. Cousins, M. S., Roberts, D. C., and de Wit, H. (2002) GABAB receptor agonists for the treatment of drug addiction: a review of recent findings. Drug Alcohol Depend. 65, 209–220.

    Article  PubMed  CAS  Google Scholar 

  328. Brebner, K., Childress, A. R., and Roberts, D. C. (2002) A potential role for GABAB agonists in the treatment of psychostimulant addiction. Alcohol Alcohol 37, 478–484.

    PubMed  CAS  Google Scholar 

  329. Ranaldi, R. and Poeggel, K. (2002) Baclofen decreases methamphetamine self-administration in rats. Neuroreport. 13, 1107–1110.

    Article  PubMed  CAS  Google Scholar 

  330. Shoaib, M., Swanner, L. S., Beyer, C. E., Goldberg, S. R., and Schindler, C. W. (1998) The GABAB agonist baclofen modifies cocaine self-administration in rats. Behav. Pharmacol. 9, 195–206.

    PubMed  CAS  Google Scholar 

  331. Akhondzadeh, S., Ahmadi-Abhari, S. A., Assadi, S. M., Shabestari, O. L., Kashani, A. R., and Farzanehgan, Z. M. (2000) Double-blind randomized controlled trial of baclofen vs. clonidine in the treatment of opiates withdrawal. J. Clin. Pharm. Ther. 25, 347–353.

    Article  PubMed  CAS  Google Scholar 

  332. Assadi, S. M., Radgoodarzi, R., and Ahmadi-Abhari, S. A. (2003) Baclofen for maintenance treatment of opioid dependence: a randomized double-blind placebo-controlled clinical trial. BMC. Psychiatry 3, 16.

    Article  PubMed  Google Scholar 

  333. Ling, W., Shoptaw, S., and Majewska, D. (1998) Baclofen as a cocaine anti-craving medication: a preliminary clinical study. Neuropsychopharmacology 18, 403–404.

    Article  PubMed  CAS  Google Scholar 

  334. Shoptaw, S., Yang, X., Rotheram-Fuller, E. J., et al. (2003) Randomized placebo-controlled trial of baclofen for cocaine dependence: preliminary effects for individuals with chronic patterns of cocaine use. J. Clin. Psychiatry 64, 1440–1448.

    Article  PubMed  CAS  Google Scholar 

  335. Li, J., Olinger, A. B., Dassow, M. S., and Abel, M. S. (2003) Up-regulation of GABAB receptor mRNA and protein in the hippocampus of cocaine-and lidocaine-kindled rats. Neuroscience 118, 451–462.

    Article  PubMed  CAS  Google Scholar 

  336. Li, J., Olinger, A. B., Dassow, M. S., and Abel, M. S. (2002) GABAB receptor gene expression is not altered in cocaine-sensitized rats. J. Neurosci. Res. 68, 241–247.

    Article  PubMed  CAS  Google Scholar 

  337. Yamaguchi, M., Suzuki, T., Abe, S., Baba, A., Hori, T., and Okado, N. (2002) Repeated cocaine administration increases GABAB(1) subunit mRNA in rat brain. Synapse. 43, 175–180.

    Article  PubMed  CAS  Google Scholar 

  338. Graybiel, A. M., Moratalla, R., and Robertson, H. A. (1990) Amphetamine and cocaine induce drug-specific activation of the c-fos gene in striosome-matrix compartments and limbic subdivisions of the striatum. Proc. Natl. Acad. Sci. USA. 87, 6912–6916.

    Article  PubMed  CAS  Google Scholar 

  339. Nguyen, T. V., Kosofsky, B. E., Birnbaum, R., Cohen, B. M., and Hyman, S. E. (1992) Differential expression of c-fos and zif268 in rat striatum after haloperidol, clozapine, and amphetamine. Proc. Natl. Acad. Sci. USA 89, 4270–4274.

    Article  PubMed  CAS  Google Scholar 

  340. Moratalla, R., Robertson, H. A., and Graybiel, A. M. (1992) Dynamic regulation of NGFI-A (zif268, egr1) gene expression in the striatum. J. Neurosci. 12, 2609–2622.

    PubMed  CAS  Google Scholar 

  341. Konradi, C., Cole, R. L., Heckers, S., and Hyman, S. E. (1994) Amphetamine regulates gene expression in rat striatum via transcription factor CREB. J. Neurosci. 14, 5623–5634.

    PubMed  CAS  Google Scholar 

  342. Cole, R. L., Konradi, C., Douglass, J., and Hyman, S. E. (1995) Neuronal adaptation to amphetamine and dopamine: molecular mechanisms of prodynorphin gene regulation in rat striatum. Neuron 14, 813–823.

    Article  PubMed  CAS  Google Scholar 

  343. Konradi, C., Leveque, J. C., and Hyman, S. E. (1996) Amphetamine and dopamine-induced immediate early gene expression in striatal neurons depends on postsynaptic NMDA receptors and calcium. J. Neurosci. 16, 4231–4239.

    PubMed  CAS  Google Scholar 

  344. Shaw-Lutchman, T. Z., Impey, S., Storm, D., and Nestler, E. J. (2003) Regulation of CRE-mediated transcription in mouse brain by amphetamine. Synapse 48, 10–17.

    Article  PubMed  CAS  Google Scholar 

  345. Terwilliger, R. Z., Beitner-Johnson, D., Sevarino, K. A., Crain, S. M., and Nestler, E. J. (1991) A general role for adaptations in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function. Brain Res. 548, 100–110.

    Article  PubMed  CAS  Google Scholar 

  346. Kano, T., Suzuki, Y., Shibuya, M., Kiuchi, K., and Hagiwara, M. (1995) Cocaine-induced CREB phosphorylation and c-Fos expression are suppressed in Parkinsonism model mice. Neuroreport 6, 2197–2200.

    Article  PubMed  CAS  Google Scholar 

  347. Pliakas, A. M., Carlson, R. R., Neve, R. L., Konradi, C., Nestler, E. J., and Carlezon, W. A. Jr. (2001) Altered responsiveness to cocaine and increased immobility in the forced swim test associated with elevated cAMP response element-binding protein expression in nucleus accumbens. J. Neurosci. 21, 7397–7403.

    PubMed  CAS  Google Scholar 

  348. Carlezon, W. A. Jr., Thome, J., Olson, V. G., et al. (1998) Regulation of cocaine reward by CREB. Science 282, 2272–2275.

    Article  PubMed  CAS  Google Scholar 

  349. Walters, C. L. and Blendy, J. A. (2001) Different requirements for cAMP response element binding protein in positive and negative reinforcing properties of drugs of abuse. J. Neurosci. 21, 9438–9444.

    PubMed  CAS  Google Scholar 

  350. Quandt, K., Frech, K., Karas, H., Wingender, E., and Werner, T. (1995) MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res. 23, 4878–4884.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Farb, D.H., Steiger, J.L., Martin, S.C., Gravielle, M.C., Gibbs, T.T., Russek, S.J. (2007). Mechanisms of GABAA and GABAB Receptor Gene Regulation and Cell Surface Expression. In: Enna, S.J., Möhler, H. (eds) The GABA Receptors. The Receptors. Humana Press. https://doi.org/10.1007/978-1-59745-465-0_8

Download citation

Publish with us

Policies and ethics