Skip to main content

Part of the book series: Nutrition and Health ((NH))

  • 1462 Accesses

Abstract

Nutritional factors are important risk factors for coronary artery disease, cerebrovascular disease, and peripheral vascular disease, and recently, the role of nutritional factors in the pathogenesis of retinal vascular disease has gained increasing attention. In the last two decades, clinical investigation has established that hyperhomocysteinemia is a major risk factor for vascular disease, including retinal vascular disease. Hyperhomocysteinemia can largely be treated or prevented by improving folate, vitamin B12, and vitamin B6 intake through dietary modification, fortification, or supplementation. Other nutritional problems, such as disorders of iron metabolism, anorexia nervosa, and lipid abnormalities are also presented in this chapter in relationship to retinal vascular disease and other ocular abnormalities. The relationship of nutritional factors to diabetic retinopathy is covered in Chapter 5, and the association of age-related macular degeneration and cardiovascular disease is discussed separately in Chapter 3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McCully KS. Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol 1969;56:111–128.

    CAS  Google Scholar 

  2. McCully KS, Wilson RB. Homocysteine theory of arteriosclerosis. Atherosclerosis 1975;22:215–227.

    CAS  Google Scholar 

  3. Wilcken DEL, Wilcken B. The pathogenesis of coronary artery disease. A possible role for methionine metabolism. J Clin Invest 1976;57:1079–1082.

    CAS  Google Scholar 

  4. Green R, Jacobsen DW. Clinical implications of hyperhomocyteinemia. In: Bailey LB (ed). Folate in Health and Disease. New York, Marcel Dekker: 1995; pp. 75–122.

    Google Scholar 

  5. Sauberlich HE. Laboratory Tests for the Assessment of Nutritional Status. Second Edition. Boca Raton, CRC Press, 1999.

    Google Scholar 

  6. Harpel PC, Zhang X, Borth W. Homocystine and hemostasis: pathogenetic mechanisms predisposing to thrombosis. J Nutr 1996;126(suppl 4):1285S–1289S.

    CAS  Google Scholar 

  7. Kang SS, Wong PWK, Norusis M. Homocysteinemia due to folate deficiency. Metabolism 1987;36:458–462.

    CAS  Google Scholar 

  8. Stabler SP, Marcell PD, Podell ER, Allen RH, Savage DG, Lindenbaum J. Elevation of total homocysteine in the serum of patients with cobalamin or folate deficiency detected by capillary gas chromatography-mass spectrometry. J Clin Invest 1988;81:466–474.

    CAS  Google Scholar 

  9. Lewis CA, Pancharuniti N, Sauberlich HE. Plasma folate adequacy as determined by homocysteine level. Ann NY Acad Sci 1992;669:360–362.

    CAS  Google Scholar 

  10. Ubbink JB, Vermaak WJH, Van der Merwe A, Becker PJ. Vitamin B-12, vitamin B-6, and folate nutritional status in men with hyperhomocysteinemia. Am J Clin Nutr 1993;57:47–53.

    CAS  Google Scholar 

  11. Selhub J, Jacques PF, Wilson PWF, Rush D, Rosenberg IH. Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. J Am Med Assoc 1993;270:2693–2698.

    CAS  Google Scholar 

  12. Landgren F, Israelsson B, Lindgren A, Hultberg B, Andersson A, Brattström L. Plasma homocysteine in acute myocardial infarction: homocysteine-lowering effect of folic acid. J Intern Med 1995;237:381–388.

    CAS  Google Scholar 

  13. O’Keefe CA, Bailey LB, Thomas EA, et al. Controlled dietary folate affects folate status in nonpregnant women. J Nutr 1995;125:2717–2725.

    CAS  Google Scholar 

  14. Brouwer IA, Van Dusseldorp M, Thomas CMG, et al. Low-dose folic acid supplementation decreases plasma homocysteine concentrations: a randomized trial. Am J Clin Nutr 1999;69:99–104.

    CAS  Google Scholar 

  15. Homocysteine Lowering Trialists’ Collaboration. Lowering blood homocysteine with folic acid based supplements: meta-analysis of randomised trials. Br Med J 1998;316:894–898.

    Google Scholar 

  16. Lobo A, Naso A, Arheart K, et al. Reduction of homocysteine levels in coronary artery disease by lowdose folic acid combined with vitamins B6 and B12. Am J Cardiol 1999;83:821–825.

    CAS  Google Scholar 

  17. Jacques PF, Selhub J, Bostom AG, Wilson PWR, Rosenberg IH. The effect of folic acid fortification on plasma folate and total homocysteine concentrations. N Engl J Med 1999;340:1449–1454.

    CAS  Google Scholar 

  18. Brattström L, Israelsson B, Norrving B, et al. Impaired homocysteine metabolism in early-onset cerebral and peripheral occlusive arterial disease. Atherosclerosis 1990;81:51–60.

    Google Scholar 

  19. Ueland PM, Refsum H, Stabler SP, Malinow MR, Andersson A, Allen RH. Total homocysteine in plasma or serum: methods and clinical applications. Clin Chem 1993;39:1764–1779.

    CAS  Google Scholar 

  20. Brattström L, Israelsson B, Lindgärde F, Hultberg B. Higher total plasma homocysteine in vitamin B12 deficiency than in heterozygosity for homocystinuria due to cystathionine β-synthase deficiency. Metabolism 1988;37:175–178.

    Google Scholar 

  21. Allen RH, Stabler SP, Savage DG, Lindenbaum J. Diagnosis of cobalamin deficiency. I: Usefulness of serum methylmalonic acid and total homocysteine concentrations. Am J Hematol 1990;34:90–98.

    CAS  Google Scholar 

  22. Lindenbaum J, Savage DG, Stabler SP, Allen RH. Diagnosis of cobalamin deficiency: II. relative sensitivities of serum cobalamin, methylmalonic acid, and total homocysteine concentrations. Am J Hematol 1990;34:99–107.

    CAS  Google Scholar 

  23. Lindenbaum J, Healton EB, Sabage DG, et al. Neuropsychiatric disorders caused by cobalamin deficiency in the absence of anemia or macrocytosis. N Engl J Med 1988;318:1720–1728.

    CAS  Google Scholar 

  24. Jacques PF, Rosenberg IH, Rogers G, et al. Serum total homocysteine concentrations in adolescent and adult Americans: results from the third National Health and Nutrition Examination Survey. Am J Clin Nutr 1999;69:482–489.

    CAS  Google Scholar 

  25. Ubbink JB, Becker PJ, Vermaak WJH, Delport R. Results of B-vitamin supplementation study used in a prediction model to define a reference range for plasma homocysteine. Clin Chem 1995;41:1033–1037.

    CAS  Google Scholar 

  26. Dudman NPB, Wilcken DEL, Wang J, Lynch JF, Macey D, Lundberg P. Disordered methionine/homocysteine metabolism in premature vascular disease: its occurrence, cofactor therapy, and enzymology. Arterioscler Thromb 1993;13:1253–1260.

    CAS  Google Scholar 

  27. Kang SS, Zhou J, Wong PWK, Kowalisyn J, Strokosch G. Intermediate homocysteinemia: a thermolabile variant of methylenetetrahydrofolate reductase. Am J Hum Genet 1988;43:414–421.

    CAS  Google Scholar 

  28. Ma J, Stampfer MJ, Hennekens CH, et al. Methylenetetrahydrofolate reductase polymorphism, plasma folate, homocysteine, and risk of myocardial infarction in US physicians. Circulation 1996;94:2410–2416.

    CAS  Google Scholar 

  29. Folsom AR, Nieto FJ, McGovern PG, et al. Prospective study of coronary heart disease incidence in relation to fasting total homocysteine, related genetic polymorphisms, and B vitamins: the Atherosclerosis Risk in Communities (ARIC) study. Circulation 1998;98:204–210.

    CAS  Google Scholar 

  30. Weger M, Stanger O, Haas A. Hyperhomocyteinemia: a risk factor for central retinal vein occlusion. Am J Ophthalmol 2001;131:290–291.

    CAS  Google Scholar 

  31. Refsum H, Ueland PM, Nygård O, Vollset SE. Homocysteine and cardiovascular disease. Ann Rev Med 1998;49:31–62.

    CAS  Google Scholar 

  32. Boushey CJ, Beresford SAA, Omenn GS, Motulsky AG. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. JAMA 1995;274:1049–1957.

    CAS  Google Scholar 

  33. Homocysteine Studies Collaboration. Homocysteine and risk of ischemic heart disease and stroke. A meta-analysis. JAMA 2002;288:2015–2022.

    Google Scholar 

  34. Clarke R, Daly L, Robinson K, Naughten E, Cahalane S, Fowler B, Graham I. Hyperhomocysteinemia: an independent risk factor for vascular disease. N Engl J Med 1991;324:1149–1155.

    CAS  Google Scholar 

  35. Wald NJ, Watt HC, Law MR, Weir DG, McPartlin J, Scott JM. Homocysteine and ischemic heart disease: results of a prospective study with implications regarding prevention. Arch Intern Med 1998;158:862–867.

    CAS  Google Scholar 

  36. Stampfer MJ, Malinow MR, Willett WC, Newcomer LM, Upson B, Ullmann D, Tishler PV, Hennekens CH. A prospective study of plasma homocyst(e)ine and risk of myocardial infarction in US physicians. JAMA 1992;268:877–881.

    CAS  Google Scholar 

  37. Nygård O, Nordrehaug JE, Refsum H, Ueland PM, Farstad M, Vollset SE. Plasma homocyteine levels and mortality in patients with coronary artery disease. N Engl J Med 1997;337:230–236.

    Google Scholar 

  38. Verhoef P, Stampfer MJ, Buring JE, et al. Homocysteine metabolism and risk of myocardial infarction: relation with vitamins B6, B12, and folate. Am J Epidemiol 1996;143:845–859.

    CAS  Google Scholar 

  39. Morrison HI, Schaubel D, Desmeules M, Wigle DT. Serum folate and risk of fatal coronary heart disease. JAMA 1996;275:1893–1896.

    CAS  Google Scholar 

  40. Chasan-Taber KL, Selhub J, Rosenberg IH, et al. A prospective study of folate and vitamin B6 and risk of myocardial infarction in US physicians. J Am Coll Nutr 1996;15:136–143.

    CAS  Google Scholar 

  41. D’Angelo A, Selhub J. Homocysteine and thrombotic disease. Blood 1997;90:1–11.

    CAS  Google Scholar 

  42. Den Heijer M, Blom HJ, Gerrits WBJ, et al. Is hyperhomocysteinaemia a risk factor for recurrent venous thrombosis? Lancet 1995;345:882–885.

    Google Scholar 

  43. Den Heijer M, Koster T, Blom HJ, et al. Hyperhomocysteinemia as a risk factor for deep-vein thrombosis. N Engl J Med 1996;334:759–762.

    Google Scholar 

  44. Malinow MR, Nieto FJ, Szklo M, Chambless LE, Bond G. Carotid artery intimal-medial wall thickening and plasma homocyst(e)ine in asymptomatic adults: the Atherosclerosis Risk in Communities Study. Circulation 1993;87:1107–1113.

    CAS  Google Scholar 

  45. Perry IJ, Refsum H, Morris RW, Ebrahim SB, Ueland PM, Shaper AG. Prospective study of serum total homocysteine concentration and risk of stroke in middle-aged British men. Lancet 1995;346:1395–1398.

    CAS  Google Scholar 

  46. Robinson K, Arheart K, Refsum H, et al. Low circulating folate and vitamin B6 concentrations: risk factors for stroke, peripheral vascular disease, and coronary artery disease. Circulation 1998;97:437–443.

    CAS  Google Scholar 

  47. Graham IM, Daly LE, Refsum HM, et al. Plasma homocysteine as a risk factor for vascular disease. The European Concerted Action Project. JAMA 1997;277:1775–1781.

    CAS  Google Scholar 

  48. Hayreh SS, Zimmerman B, McCarthy MJ, Podhajsky P. Systemic diseases associated with various types of retinal vein occlusion. Am J Ophthalmol 2001;131:61–77.

    CAS  Google Scholar 

  49. Elman MJ, Bhatt AK, Quinlan PM, Enger C. The risk for systemic vascular diseases and mortality in patients with central retinal vein occlusion. Ophthalmology 1990;97:1543–1548.

    CAS  Google Scholar 

  50. Eye Disease Case-Control Study Group. Risk factors for branch retinal vein occlusion. Am J Ophthalmol 1993;116:286–296.

    Google Scholar 

  51. Sperduto RD, Hiller R, Chew E, et al. Risk factors for hemiretinal vein occlusion: comparison with risk factors for central and branch retinal vein occlusion. The Eye Disease Case-Control Study. Ophthalmology 1998;105:765–771.

    CAS  Google Scholar 

  52. Mitchell P, Smith W, Chang A. Prevalence and associations of retinal vein occlusion in Australia: the Blue Mountains Eye Study. Arch Ophthalmol 1996;114:1243–1247.

    CAS  Google Scholar 

  53. Rath EZ, Frank RN, Shin DH, Kim C. Risk factors for retinal vein occlusions. A case-control study. Ophthalmology 1992;99:509–514.

    CAS  Google Scholar 

  54. Williamson TH, Rumley A, Lowe GDO. Blood viscosity, coagulation, and activated protein C resistance in central retinal vein occlusion: a population controlled study. Br J Ophthalmol 1996;80:203–208.

    CAS  Google Scholar 

  55. Larson J, Olafsdottir E, Bauer B. Activated protein C resistance in young adults with central retinal vein occlusion. Br J Ophthalmol 1996;80:200–202.

    Google Scholar 

  56. Williamson TH. Central retinal vein occlusion: what’s the story? Br J Ophthalmol 1997;81:698–704

    CAS  Google Scholar 

  57. Greaves M. Aging and the pathogenesis of retinal vein thrombosis. Br J Ophthalmol 1997;81:810–811.

    CAS  Google Scholar 

  58. Wilson RS, Ruiz RS. Bilateral central retinal artery occlusion in homocystinuria. Arch Opthalmol 1969;82:267–268.

    CAS  Google Scholar 

  59. Mukuno K, Matsui K, Haraguchi H. Ocular manifestations of homocystinuria, report of two cases. Acta Soc Ophthalmol Japan 1967;71:66–73.

    CAS  Google Scholar 

  60. Schimke RN, McKusick VA, Huang T, Pollack AD. Homocystinuria. Studies of 20 families with 38 affected members. JAMA 1965;193:711–719.

    CAS  Google Scholar 

  61. Biousse V, Newman NJ, Sternberg P Jr. Retinal vein occlusion and transient monocular visual loss associated with hyperhomocystinemia. Am J Ophthalmol 1997;124:257–260.

    CAS  Google Scholar 

  62. Gupta A, Agarwal A, Bansal RK, Agarwal A, Chugh KS. Ischaemic central retinal vein occlusion in the young. Eye 1993;7:138–142.

    Google Scholar 

  63. Greven CM, Slusher MM, Weaver RG. Retinal arterial occlusions in young adults. Am J Ophthalmol 1995;120:776–783.

    CAS  Google Scholar 

  64. Cabezas-León MM, García-Montero MR, Morente-Matas P. Hiperhomocistinemia como un factor de riesgo para la trombosis de la vena central de la retina en un paciente joven. Rev Neurol 2003;37:441–443.

    Google Scholar 

  65. Wenzler EM, Rademakers JJM, Boers GHJ, Cruysberg JRM, Webers CAB, Deutman AF. Hyperhomocyteinemia in retinal artery and retinal vein occlusion. Am J Ophthalmol 1993;115:162–167.

    CAS  Google Scholar 

  66. Vine AK. Hyperhomocysteinemia: a risk factor for central retinal vein occlusion. Am J Ophthalmol 2000;129:640–644.

    CAS  Google Scholar 

  67. Pianka P, Almog Y, Man O, Goldstein M, Sela BA, Loewenstein A. Hyperhomocystinemia in patients with nonarteritic anterior ischemic optic neuropathy, central retinal artery occlusion, and central retinal vein occlusion. Ophthalmology 2000;107:1588–1592.

    CAS  Google Scholar 

  68. Kawasaki A, Purvin VA, Burgett RA. Hyperhomocysteinaemia in young patients with non-arteritic anterior ischaemic optic neuropathy. Br J Ophthalmol 1999;83:1287–1290.

    CAS  Google Scholar 

  69. Cahill M, Karabatzaki M, Meleady R, et al. Raised plasma homocysteine as a risk factor for retinal vascular occlusive disease. Br J Ophthalmol 2000;84:154–157.

    CAS  Google Scholar 

  70. Cahill M, Karabatzaki M, Donoghue C, et al. Thermolabile MTHFR genotype and retinal vascular occlusive disease. Br J Ophthalmol 2001;85:88–90.

    CAS  Google Scholar 

  71. Loewenstein A, Goldstein M, Winder A, Lazar M, Eldor A. Retinal vein occlusion associated with methylenetetrahydrofolate reductase mutation. Ophthalmology 1999;106:1817–1820.

    CAS  Google Scholar 

  72. Mason JB, Miller JW. The effects of vitamins B12, B6, and folate on blood homocysteine levels. Ann NY Acad Sci 1992;669:197–203.

    CAS  Google Scholar 

  73. Brönstrup A, Hages M, Pietrzik K. Lowering of homocysteine concentrations in elderly men and women. Int J Vitam Res 1999;69:187–193.

    Google Scholar 

  74. Ubbink JB. The role of vitamins in the pathogenesis and treatment of hyperhomocyst(e)inemia. J Inher Metab Dis 1997;20:316–325.

    CAS  Google Scholar 

  75. Omenn GS, Beresford SAA, Motulsky AG. Preventing coronary heart disease: B vitamins and homocysteine. Circulation 1998;97:421–424.

    CAS  Google Scholar 

  76. Clarke R, Collins R. Can dietary supplements with folic acid or vitamin B6 reduce cardiovascular risk? Design of clinical trials to test the homocysteine hypothesis of vascular disease. J Cardiovasc Risk 1998;5:249–255.

    CAS  Google Scholar 

  77. Food and Nutrition Board, Institute of Medicine. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc: A Report of the Panel on Micronutrients. Washington, D.C., National Academy Press: 2001; pp. 290–393.

    Google Scholar 

  78. UNICEF/ UNU/ WHO/ MI. Preventing Iron Deficiency in Women and Children: Background and Consensus on Key Technical Issues and Resources for Advocacy, Planning, and Implementing National Programs. Geneva, UNICEF/UNU/WHO/MI Technical Workshop, 1998.

    Google Scholar 

  79. Pilch SM, Senti FR. Assessment of the Iron Nutritional Status of the U.S. Population Based on the Data Collected in the Second National Health and Nutrition Examination Survey, 1876–1980. Bethesda, MD, Federation of American Societies for Experimental Biology, 1984.

    Google Scholar 

  80. Dallman PR, Yip R, Johnson C. Prevalence and causes of anemia in the United States, 1976–1980. Am J Clin Nutr 1984;39:437–445.

    CAS  Google Scholar 

  81. Looker AC, Dallman PR, Carroll MD, Gunter EW, Johnson CL. Prevalence of iron deficiency in the United States. JAMA 1997;277:973–976.

    CAS  Google Scholar 

  82. Fairbanks VF. Iron in medicine and nutrition. In: Shils ME, Olson JA, Shike M, Ross AC (eds). Modern Nutrition in Health and Disease. Ninth Edition. Baltimore, Williams & Wilkins: 1999; pp. 193–221.

    Google Scholar 

  83. Lynch S, Green R. Assessment of nutritional anemias. In: Ramakrishnan U (ed). Nutritional Anemias. Boca Raton, CRC: 2001; pp. 23–42.

    Google Scholar 

  84. Magnusson B, Björn-Rasmussen E, Hallberg L, Rossander L. Iron absorption in relation to iron status. Scand J Haematol 1981;27:201–208.

    CAS  Google Scholar 

  85. Milman N, Pedersen NS, Visfeldt J. Serum ferritin in healthy Danes: relation to marrow haemosiderin iron stores. Dan Med Bull 1983;30:115–120.

    CAS  Google Scholar 

  86. Milman N. Serum ferritin in Danes: studies of iron status from infancy to old age, during blood donation and pregnancy. Int J Hematol 1996;63:103–135.

    CAS  Google Scholar 

  87. Van den Broek NR, Letsky EA, White SA, Shenkin A. Iron status in pregnant women: which measurements are valid? Br J Haematol 1998;103:817–824.

    Google Scholar 

  88. Holt JM, Gordon-Smith EC. Retinal abnormalities in diseases of the blood. Br J Ophthalmol 1969;53:145–160.

    CAS  Google Scholar 

  89. Rubenstein RA, Yanoff M, Albert DM. Thrombocytopenia, anemia, and retinal hemorrhage. Am J Ophthalmol 1968;65:435–439.

    CAS  Google Scholar 

  90. Kirkham TH, Wrigley PFM, Holt JM. Central retinal vein occlusion complicating iron deficiency anemia. Br J Ophthalmol 1971;55:777–780.

    CAS  Google Scholar 

  91. Kurzel RB, Angerman NS. Venous stasis retinopathy after long-standing menorrhagia. J Reprod Med 1978;20:239–242.

    CAS  Google Scholar 

  92. Matsuoka Y, Hayasaka S, Yamada K. Incomplete occlusion of central retinal artery in a girl with iron deficiency anemia. Ophthalmologica 1996;210:358–360.

    CAS  Google Scholar 

  93. Kacer B, Hattenbach LO, Hörle S, Scharrer I, Kroll P, Koch F. Central retinal vein occlusion and nonarteritic ischemic optic neuropathy in 2 patients with mild iron deficiency anemia. Ophthalmologica 2001;215:128–131.

    CAS  Google Scholar 

  94. Shorb SR. Anemia and diabetic retinopathy. Am J Ophthalmol 1985;100:434–436.

    CAS  Google Scholar 

  95. Lubeck MJ. Papilledema caused by iron-deficiency anemia. Trans Am Acad Ophthal Oto-Lar 1959;63:306–310.

    CAS  Google Scholar 

  96. Beutler E, Fairbanks VF, Fahey JL. Clinical Disorders of Iron Metabolism. New York, Grune and Stratton: 1963; pp. 131–132.

    Google Scholar 

  97. Capriles L. Intracranial hypertension and iron-deficiency anemia. Arch Neurol 1963;9:147–153.

    CAS  Google Scholar 

  98. Knizley H, Noyes WD. Iron deficiency anemia, papilledema, thrombocytosis, and transient hemiparesis. Arch Intern Med 1972;129:483–486.

    Google Scholar 

  99. Fleming DJ, Jacques PF, Tucker KL, et al. Iron status of the free-living, elderly Framingham Heart Study cohort: an iron-replete population with a high prevalence of elevated iron stores. Am J Clin Nutr 2001;73:638–646.

    CAS  Google Scholar 

  100. Beard J. Iron status of free-living elderly individuals. Am J Clin Nutr 2001;73:503–504.

    CAS  Google Scholar 

  101. Tuomainen T, Punnonen K, Nyyssonen K, Salonen JT. Association between total body iron stores and risk of acute myocardial infarction in men. Circulation 1998;97:1461–1466.

    CAS  Google Scholar 

  102. Stevens RG, Jones DY, Micoaazi MS, Taylor PR. Body iron stores and the risk of cancer. N Engl J Med 1988;319:1047–1052.

    CAS  Google Scholar 

  103. Salonen JT, Tuomainen TP, Nyyssonen K, Lakka HM, Punnonen K. Relation between iron stores and non-insulin dependent diabetes in men: case-control study. Br Med J 1998;317:727.

    CAS  Google Scholar 

  104. Sullivan JL. Retinopathy of prematurity and iron: a modification of the oxygen hypothesis. Pediatrics 1986;78:1171–1172.

    CAS  Google Scholar 

  105. Sullivan JL. Iron, plasma antioxidants, and the ‘oxygen radical disease of prematurity’. Am J Dis Child 1988;142:1341–1344.

    CAS  Google Scholar 

  106. Sullivan JL. Retinopathy of prematurity. Low iron binding capacity may contribute. Br Med J 1993;307:1353–1354.

    CAS  Google Scholar 

  107. Cooke RWI, Clark D, Hickey-Dwyer M, Weindling AM. The apparent role of blood transfusions in the development of retinopathy of prematurity. Eur J Pediatr 1993;152:833–836.

    CAS  Google Scholar 

  108. Sacks LM, Schaffer DB, Anday EK, Peckham GJ, Delivoria-Papadopoulos M. Retrolental fibroplasia and blood transfusion in very low-birth-weight infants. Pediatrics 1981;68:770–774.

    CAS  Google Scholar 

  109. Clark C, Gibbs JAH, Maniello R, Outerbridge EW, Aranda JV. Blood transfusion: a possible risk factor in retrolental fibroplasia. Acta Pediatr Scand 1981;70:535–539.

    Google Scholar 

  110. Inder TE, Clemett RS, Austin NC, Graham P, Darlow BA. High iron status in very low birth weight infants is associated with an increased risk of retinopathy of prematurity. J Pediatr 1997;131:541–544.

    CAS  Google Scholar 

  111. Hesse L, Eberl W, Schlaud M, Poets CF. Blood transfusion: iron load and retinopathy of prematurity. Eur J Pediatr 1997;156:465–470.

    CAS  Google Scholar 

  112. Romagnoli C, Zecca E, Gallini F, Girlando P, Zuppa AA. Do recombinant human erythropoietin and iron supplementation increase the risk of retinopathy of prematurity? Eur J Pediatr 2000;159:627–634.

    CAS  Google Scholar 

  113. Yamaguchi K, Takahashi S, Kawanami T, Kato T, Sasaki H. Retinal degeneration in hereditary ceruloplasmin deficiency. Ophthalmologica 1998;212:11–14.

    CAS  Google Scholar 

  114. Dunaief JL, Richa C, Franks EP, et al. Macular degeneration in a patient with aceruloplasminemia, a disease associated with retinal iron overload. Ophthalmology 2005;112:1062–1065.

    Google Scholar 

  115. Shibuya Y, Hayasaka S. Central retinal vein occlusion in a patient with anorexia nervosa. Am J Ophthalmol 1995;119:109–110.

    CAS  Google Scholar 

  116. Miller D. A case of anorexia nervosa in a young woman with development of subcapsular cataracts. Trans Ophthalmol Soc U K 1958;78:217–222.

    CAS  Google Scholar 

  117. Stigmar G. Anorexia nervosa associated with cataract (report of a case). Acta Ophthalmol 1965;43:787–789.

    CAS  Google Scholar 

  118. Abraham SF, Banks CN, Beumont PJV. Eye signs in patients with anorexia nervosa. Aust J Ophthalmol 1980;8:55–57.

    CAS  Google Scholar 

  119. Havel RJ, Kane JP. Introduction: structure and metabolism of plasma lipoproteins. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds). The Metabolic & Molecular Bases of Inherited Disease. Eighth Edition. New York, McGraw-Hill: 2001; pp. 2705–2716.

    Google Scholar 

  120. Spaeth GL. Ocular manifestations of lipoprotein disease. J Cont Educ Ophthalmol 1979;41:11–24.

    Google Scholar 

  121. Heyl AG. Intra-ocular lipemia. Trans Am Ophthalmol Soc 1880;3:54–66.

    Google Scholar 

  122. Wagener HP. Lipemia retinalis: reports of three cases. Am J Ophthalmol 1922;5:521–525.

    Google Scholar 

  123. McCann WS. Lipemia retinalis. Bull Johns Hopkins Hosp 1923;34:302–304.

    Google Scholar 

  124. Chase LA. Diabetic lipaemia retinalis with report of a case. Canad Med Assoc J 1927;17:197–204.

    Google Scholar 

  125. Parker WR, Culler AC. Lipemia retinalis. Am J Ophthalmol 1930;13:573–584.

    Google Scholar 

  126. McKee SH, Rabinowitch IM. Lipaemia retinalis. Canad Med Assoc J 1931;25:530–534.

    Google Scholar 

  127. Marble A, Smith RM. Blood lipids in lipaemia retinalis. Arch Ophthalmol 1936;15:86–94.

    CAS  Google Scholar 

  128. Holt LE Jr, Aylward FX, Timbres HG. Idiopathic familial lipemia. Bull Johns Hopkins Hosp 1939;64:279–314.

    Google Scholar 

  129. Goodman M, Shuman H, Goodman S. Idiopathic lipemia with secondary xanthomatosis, hepatosplenomegaly and lipemic retinalis. J Pediatr 1940;16:596–606.

    CAS  Google Scholar 

  130. Falls HF. Lipemia retinalis. Report of a case. Arch Ophthalmol 1943;30:358–361.

    Google Scholar 

  131. Kauffman ML. Lipaemia retinalis. Am J Ophthalmol 1943;26:1205–1208.

    Google Scholar 

  132. Lepard CW. Lipemia retinalis in the non-diabetic patient. Arch Ophthalmol 1944;32:37–38.

    Google Scholar 

  133. Grossmann EE, Hitz JB. Lipemia retinalis associated with essential hyperlipemia. Arch Ophthalmol 1948;40:570–573.

    Google Scholar 

  134. Lewis N. Intra-ocular involvement in a case of xanthomatous biliary cirrhosis. Br J Ophthalmol 1950;34:506–508.

    CAS  Google Scholar 

  135. Frank L, Levitt LM. Idiopathic hyperlipemia with secondary xanthomatosis. Report of a case. Arch Derm Syph 1951;64:434–436.

    CAS  Google Scholar 

  136. Everett WG. Nondiabetic lipemia retinalis: report of a case. Arch Ophthalmol 1952;48:712–715.

    CAS  Google Scholar 

  137. Martinez KR, Cibis GW, Tauber JT. Lipemia retinalis. Arch Ophthalmol 1992;110:1171.

    CAS  Google Scholar 

  138. Rayner S, Lee N, Leslie D, Thompson G. Lipaemia retinalis: a question of chylomicrons? Eye 1996;10:603–608.

    Google Scholar 

  139. El-Harazi SM, Kellaway J, Arora A. Lipaemia retinalis. Austr N Z J Ophthalmol 1998;26:255–257.

    CAS  Google Scholar 

  140. Dunphy EB. Ocular conditions associated with idiopathic hyperlipemia. Am J Ophthalmol 1950;33:1579–1586.

    CAS  Google Scholar 

  141. Thomas PK, Smith EB. Ocular manifestations in idiopathic hyperlipaemia and xanthomatosis. Br J Ophthalmol 1958;42:501–506.

    CAS  Google Scholar 

  142. Bron AJ, Williams HP. Lipaemia of the limbal vessels. Br J Ophthalmol 1972;56:343–346.

    Google Scholar 

  143. Slatter DH, Nelson AW, Stringer JM. Effects of experimental hyperlipoproteinemia on the canine eye. Exp Eye Res 1979;29:437–447.

    CAS  Google Scholar 

  144. Yanko L, Michaelson IC, Rosenmann E, Ivri M, Lutsky I. Effects of experimental hyperlipoproteinaemia on the retina and optic nerve in rhesus monkeys. Br J Ophthalmol 1983;67:32–36.

    CAS  Google Scholar 

  145. Vinger PF, Sachs BA. The ocular manifestations of hyperlipoproteinemia. Am J Ophthalmol 1970;70:563–573.

    CAS  Google Scholar 

  146. Hayasaka S, Fukuyo T, Kitaoka M, et al. Lipaemia retinalis in a 29-day-old infant with type 1 hyperlipoproteinaemia. Br J Ophthalmol 1985;69:280–282.

    CAS  Google Scholar 

  147. Dodson PM, Galton DJ, Winder AF. Retinal vascular abnormalities in the hyperlipidaemias. Trans Ophthalmol Soc UK 1981;101:17–21.

    CAS  Google Scholar 

  148. Dodson PM, Galton DJ, Hamilton AM, Blach RK. Retinal vein occlusion and the prevalence of lipoprotein abnormalities. Br J Ophthalmol 1982;66:161–164.

    CAS  Google Scholar 

  149. Orlin C, Lee K, Jampol LM, Farber M. Retinal arteriolar changes in patients with hyperlipidemias. Retina 1988;8:6–9.

    CAS  Google Scholar 

  150. Kurz GH, Shakib M, Sohmer KK, Friedman AH. The retina in type V hyperlipoproteinaemia. Am J Ophthalmol 1976;82:32–43.

    CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

(2007). Retinal Vascular Disease. In: Handbook of Nutrition and Ophthalmology. Nutrition and Health. Humana Press. https://doi.org/10.1007/978-1-59259-979-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-979-0_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-196-7

  • Online ISBN: 978-1-59259-979-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics