Skip to main content

Pattern Recognition Receptors in Drosophila

  • Chapter
Book cover Innate Immunity

Part of the book series: Infectious Disease ((ID))

  • 377 Accesses

Abstract

The foundation of the innate immune system is the recognition of infectious non-self. Janeway (1,2) has proposed that this recognition is mediated by the binding of host pattern recognition proteins to pathogen-associated molecular patterns (PAMPs). PAMPs were originally defined as structures found on the surfaces of microorganisms but not present on normal host cells. More recently, this definition has been broadened to include intracellular components of microorganisms, such as CpG DNA (3). There are several different classes of pattern recognition proteins including secreted, membrane-bound, and integral membrane proteins, and some pattern recognition molecules can exist in more than one of these forms. Recognition of PAMPs by pattern recognition proteins has several consequences, including the activation of induced cellular and humoral immune responses, such as the induction of antimicrobial genes in Drosophila, and the activation of T- cells in mammals. Pattern recognition proteins also participate in the effector mechanisms of the immune system, such as the complement (mammals) and prophenoloxidase (insect) cascades, as well as phagocytosis of microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Janeway CA Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harbor Symp Quant Biol 1989;54:1–13.

    Article  PubMed  CAS  Google Scholar 

  2. Medzhitov R, Janeway CA Jr. Innate immunity: the virtues of a nonclonal system of recognition. Cell 1997;91:295–298.

    Article  PubMed  CAS  Google Scholar 

  3. Krieg AM. The role of CpG motifs in innate immunity. Curr Opin Immunol 2000;12:35–43.

    Article  PubMed  CAS  Google Scholar 

  4. Volanakis JE. Overview of the complement system. In: Volanakis JE, Frank MM (eds.). The Human Complement System in Health and Disease. New York: Marcel Dekker, 1998, pp:9–32.

    Google Scholar 

  5. Dodds AW, Law SK. The phylogeny and evolution of the thioester bond-containing proteins C3, C4 and alpha 2-macroglobulin. Immunol Rev 1998;166:15–26.

    Article  PubMed  CAS  Google Scholar 

  6. Armstrong PB, Melchior R, Swarnakar S, Quigley JP. a2-macroglobulin does not function as a C3 homologue in the plasma hemolytic system of the American horseshoe crab, Limulus. Mol Immunol 1998;35:47–53.

    PubMed  CAS  Google Scholar 

  7. Lagueux M, Perrodou E, Levashina EA, Capovilla M, Hoffmann JA. Constitutive expression of a complement-like protein in Toll and JAK gain-of-function mutants of Drosophila. Proc Natl Acad Sci USA 2000;97:11427–11432.

    Article  PubMed  CAS  Google Scholar 

  8. Dearolf CR. JAKs and STATs in invertebrate model organisms. Cell Mol Life Sci 1999;55:1578–1584.

    Article  PubMed  CAS  Google Scholar 

  9. Levashina EA, Moita LF, Blandin S, et al. Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell 2001;104:709–718.

    Article  PubMed  CAS  Google Scholar 

  10. Lee WJ, Lee JD, Kravchenko VV, Ulevitch RJ, Brey PT. Purification and molecular cloning of an inducible gram-negative bacteria-binding protein from the silkworm, Bombyx mori. Proc Natl Acad Sci USA 1996;93:7888–7893.

    Article  PubMed  CAS  Google Scholar 

  11. Kim YS, Ryu JH, Han SJ, et al. Gram-negative bacteria-binding protein, a pattern recognition receptor for lipopolysaccharide and beta-1,3-glucan that mediates the signaling for the induction of innate immune genes in Drosophila melanogaster cells. J Biol Chem 2000;275:32721–32727.

    Article  PubMed  CAS  Google Scholar 

  12. Dimopoulos G, Richman A, Muller HM, Kafatos FC. Molecular immune responses of the mosquito Anopheles gambiae to bacteria and malaria parasites. Proc Natl Acad Sci USA 1997;94:11508–11513.

    Article  PubMed  CAS  Google Scholar 

  13. Richman AM, Dimopoulos G, Seeley D, Kafatos FC. Plasmodium activates the innate immune response of Anopheles gambiae mosquitoes. EMBO J 1997;16:6114–6119.

    Article  PubMed  CAS  Google Scholar 

  14. Yoshida H, Kinoshita K, Ashida M. Purification of a peptidoglycan recognition protein from hemolymph of the silkworm, Bombyx mori. J Biol Chem 1996;271:13854–13860.

    Article  PubMed  CAS  Google Scholar 

  15. Ochiai M, Ashida M. A pattern recognition protein for peptidoglycan. Cloning the cDNA and the gene of the silkworm, Bombyx mori. J Biol Chem 1999;274:11854–11858.

    Article  PubMed  CAS  Google Scholar 

  16. Kang D, Liu G, Lundstrom A, Gelius E, Steiner H.A peptidoglycan recognition protein in innate immunity conserved from insects to humans. Proc Natl Acad Sci USA 1998;95:10078–10082.

    Article  PubMed  CAS  Google Scholar 

  17. Liu C, Gelius E, Liu G, Steiner H, Dziarski R. Mammalian peptidoglycan recognition protein binds peptidoglycan with high affinity, is expressed in neutrophils, and inhibits bacterial growth. J Biol Chem 2000;275:24490–24499.

    Article  PubMed  CAS  Google Scholar 

  18. Werner T, Liu G, Kang D, et al. A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster. Proc Natl Acad Sci USA 2000;97:13772–13777.

    Article  PubMed  CAS  Google Scholar 

  19. Gough PJ, Gordon S. The role of scavenger receptors in the innate immune system. Microbes Infect 2000;2:305–311.

    Article  PubMed  CAS  Google Scholar 

  20. Hampton RY, Golenbock DT, Penman M, Krieger M, Raetz CR. Recognition and plasma clearance of endotoxin by scavenger receptors. Nature 1991;352:342–344.

    Article  PubMed  CAS  Google Scholar 

  21. Ashkenas J, Penman M, Vasile E, Acton S, Freeman M, Krieger M. Structures and high and low affinity ligand binding properties of murine type I and type II macrophage scavenger receptors. J Lipid Res 1993;34:983–1000.

    PubMed  CAS  Google Scholar 

  22. Dunne DW, Resnick D, Greenberg J, Krieger M, Joiner KA. The type 1 macrophage scavenger receptor binds to gram-positive bacteria and recognizes lipoteichoic acid. Proc Natl Acad Sci USA 1994;91:1863–1867.

    Article  PubMed  CAS  Google Scholar 

  23. Suzuki H, Kurihara Y, Takeya M, et al. A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature 1997;386:292–296.

    Article  PubMed  CAS  Google Scholar 

  24. Thomas C, Li Y, Kodoma T, et al. Protection from lethal Gram-positive infection by macrophage scavenger receptor-dependent phagocytosis. J Exp Med 2000;191:147–155.

    Article  PubMed  CAS  Google Scholar 

  25. Abrams JM, Lux A, Steller H, Krieger M. Macrophages in Drosophila embryos and L2 cells exhibit scavenger receptor-mediated endocytosis. Proc Natl Acad Sci USA 1992;89:10375–10379.

    Article  PubMed  CAS  Google Scholar 

  26. Pearson A, Lux A, Krieger M. Expression cloning of dSR-CI, a class C macrophage-specific scavenger receptor from Drosophila melanogaster. Proc Natl Acad Sci USA 1995;92:4056–4060.

    Article  PubMed  CAS  Google Scholar 

  27. Ramet M, Pearson A, Manfruelli P, et al. Drosophila scavenger receptor C 1 is a pattern recognition receptor for bacteria. Immunity 2001;15:1027–1038.

    Article  PubMed  CAS  Google Scholar 

  28. Theopold U, Samakovlis C, Erdjument-Bromage et al. Helix pomatia lectin, an inducer of Drosophila immune response, binds to hemomucin, a novel surface mucin. J Biol Chem 1996;271:12708–12715.

    Article  PubMed  CAS  Google Scholar 

  29. Michel T, Reichhart JM, Hoffmann JA, Royet J. Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 2001;414:756–759.

    Article  PubMed  CAS  Google Scholar 

  30. Ramet M, Manfruelli P, Pearson A, Mathey-Prevot B, Ezekowitz RA. Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature 2002;416:644 648.

    Google Scholar 

  31. Gottar M, Gobert V, Michel T, et al. The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 2002;416:640–644.

    Article  PubMed  CAS  Google Scholar 

  32. Choe KM, Werner T, Stoven S, Hultmark D, Anderson KV. Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Science 2002;296:359–362.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Rämet, M., Pearson, A., Baksa, K., Harikrishnan, A. (2003). Pattern Recognition Receptors in Drosophila . In: Ezekowitz, R.A.B., Hoffmann, J.A. (eds) Innate Immunity. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-320-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-320-0_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9746-5

  • Online ISBN: 978-1-59259-320-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics