Skip to main content

Neurology

  • Chapter
  • First Online:

Abstract

From the moment of conception the human cognitive and sensorimotor systems develop to function in the Earth’s gravitational field. Although humans were never intended to live, work, eat, or play in a microgravity environment, the human nervous system is adaptable, as has been learned when humans have traveled into low Earth orbit and lived in sustained freefall. It is this plasticity of the nervous system that allows us to transition, under terrific acceleration, from the surface of our planet to the weightlessness of space. Outlined and/or described in detail in this chapter are some of the neurological effects associated with space flight. The transition represented by these effects can be slow, uncomfortable, and even dangerous. To help astronauts adjust to the physical and functional limitations caused by adjustment of the nervous system to gravitational transitions, countermeasures may be needed. Countermeasures that have been tested include medication, prevention techniques and training exercises, physical rehabilitation, and mechanical devices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lebedev V. Diary of a cosmonaut: 211 days in space. College Station, TX: GLOSS Company; 1988.

    Google Scholar 

  2. Heidelbaugh ND, Wescott DE, Kare MR. Taste and aroma testing. Houston, TX: NASA Johnson Space Center; 1975. p. 2123–34.

    Google Scholar 

  3. Watt DGD, Money KE, Bondar RL, Thirsk RB, Garneau M, Scully-Power P. Canadian medical experiments on Shuttle flight 41-G. Can Aeronaut Space J. 1985;31(3):215–26.

    CAS  PubMed  Google Scholar 

  4. Olabi AA, Lawless HT, Hunter JB, Levitsky DA, Halpern BP. The effect of microgravity and space flight on the chemical senses. J Food Sci. 2002;67(2):468–78.

    Article  CAS  PubMed  Google Scholar 

  5. Clément G. Fundamentals of space medicine. New York, NY: Microcosm and Springer; 2011.

    Book  Google Scholar 

  6. Clément G, Reschke MF. Neuroscience in space. New York, NY: Springer; 2008.

    Book  Google Scholar 

  7. Young LR, Oman CM, Merfeld D, Watt D, Roy S, DeLuca C, et al. Spatial orientation and posture during and following weightlessness: human experiments on Spacelab Life Sciences 1. J Vestib Res Equilib Orientat. 1993;3(3):231–9.

    CAS  Google Scholar 

  8. Watt DGD, Landolt JP, Young LR. Effects of long-term weightlessness on roll-circular vection. In: Proceedings of the seventh CASI conference on astronautics, Ottawa, Canada; 1992.

    Google Scholar 

  9. Schmitt H, Reid D. Anecdotal information on space adaptation syndrome. In: Space adaptation syndrome drug workshop, Houston; 1985.

    Google Scholar 

  10. Kornilova LN. Vestibular function and sensory interaction in altered gravity. Adv Space Biol Med. 1997;6:275–313.

    Article  CAS  PubMed  Google Scholar 

  11. Reschke MF, Anderson DJ, Homick JL. Vestibulo-spinal response modification as determined with the H-reflex during the Spacelab-1 flight. Exp Brain Res. 1986;64(2):367–79.

    Article  CAS  PubMed  Google Scholar 

  12. Young LR, Oman CM, Watt DG, Money KE, Lichtenberg BK. Spatial orientation in weightlessness and readaptation to earth’s gravity. Science. 1984;225(4658):205–8.

    Article  CAS  PubMed  Google Scholar 

  13. Bryanov II, Gorgiladze GI, Kornilova LN. Vestibular function. In: Gazenko OG, editor. Results of medical research performed on the Salyut 6-Soyuz orbital scientific research complex. Moscow: Meditsina; 1986. p. 169–85. 248–56.

    Google Scholar 

  14. Kornilova LN, Miuller K, Chernobyl’skiĭ LM. Phenomenology of spatial illusory reactions in weightlessness. Fiziol Cheloveka. 1995;21(4):50–62.

    CAS  PubMed  Google Scholar 

  15. Ross H, Brodie E, Benson A. Mass discrimination during prolonged weightlessness. Science. 1984;225(4658):219–21.

    Article  CAS  PubMed  Google Scholar 

  16. Ross HE, Brodie EE, Benson AJ. Mass-discrimination in weightlessness and readaptation to Earth’s gravity. Exp Brain Res. 1986;64(2):358–66.

    Article  CAS  PubMed  Google Scholar 

  17. Lipshits MI, Gurfinkel EV, McIntyre J, Droulez J, Gurfinkel VS, Berthoz A. Influence of weightlessness on haptic perception. In: 5th European symposium on life sciences research in space, Arcachon, France; 1993.

    Google Scholar 

  18. Von Baumgarten R, Brenske A, Kass J, Thumler R, Vogel H, Wetzig J. European experiments on the vestibular system during the Spacelab D1 mission. In: Sahm PR, Jansen R, Keller MH, editors. Proceedings of the Norderney symposium on scientific results of the German Spacelab mission D-1. Norderney: German Spacelab; 1986. p. 477–90.

    Google Scholar 

  19. Von Baumgarten R, Kass J, Vogel H, Wetzig J. Influence of proprioceptive information on space orientation on the ground and in orbital weightlessness. Adv Space Res. 1989;9(11):223–30.

    Article  Google Scholar 

  20. Kass JR, Vogel H, von Baumgarten RJ. Neck receptor stimulation in 0 and 1 g. In: The 3rd European symposium on life sciences research in space, Graz; 1987. pp. 233–236.

    Google Scholar 

  21. Berger M, Gerstenbrand F, Kozlovskaya IB, Burlatchkova N, Muigg A, Sokolov A, et al. Eye, head and arm coordination and spinal reflexes in weightlessness—MONIMIR experiment. In: Austrian Society for Aerospace Medicine (ASM), editor. Health from space research. Vienna: Springer; 1992. p. 119–35.

    Chapter  Google Scholar 

  22. Roll JP, Popov K, Gurfinkel V. Body proprioceptive references in weightlessness as studied by muscle tendon vibration. In: Proceedings of the fourth European symposium on life sciences research in space. Trieste, Italy; 1990.

    Google Scholar 

  23. Roll JP, Popov K, Gurfinkel V, Lipshits M, André-Deshays C, Gilhodes JC, et al. Sensorimotor and perceptual function of muscle proprioception in microgravity. J Vestib Res Equilib Orientat. 1993;3(3):259–73.

    CAS  Google Scholar 

  24. Lackner JR, DiZio P. Gravitoinertial force level affects the appreciation of limb position during muscle vibration. Brain Res. 1992;592(1-2):175–80.

    Article  CAS  PubMed  Google Scholar 

  25. Parker DE, Reschke MF, Arrott AP, Homick JL, Lichtenberg BK. Otolith tilt-translation reinterpretation following prolonged weightlessness: implications for preflight training. Aviat Space Environ Med. 1985;56(6):601–6.

    CAS  PubMed  Google Scholar 

  26. Arrott AP, Young LR, Merfeld DM. Perception of linear acceleration in weightlessness. Aviat Space Environ Med. 1990;61(4):319–26.

    CAS  PubMed  Google Scholar 

  27. Fernández C, Goldberg JM. Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. III. Response dynamics. J Neurophysiol. 1976;39(5):996–1008.

    PubMed  Google Scholar 

  28. Benson AJ, Kass JR, Vogel H. European vestibular experiments on the Spacelab-1 mission: 4. Thresholds of perception of whole-body linear oscillation. Exp Brain Res. 1986;64(2):264–71.

    CAS  PubMed  Google Scholar 

  29. Benson AJ, Viéville T. European vestibular experiments on the Spacelab-1 mission: 6. Yaw axis vestibulo-ocular reflex. Exp Brain Res. 1986;64(2):279–83.

    CAS  PubMed  Google Scholar 

  30. Clément G, Reschke M. Neurosensory and sensory-motor functions. In: Moore D, Bie P, Oser H, editors. Gravitational and space biology: an overview of life sciences research in MG. Heidelberg: Springer; 1996. p. 178–258.

    Google Scholar 

  31. Clément G, Berthoz A, Lestienne F. Adaptive changes in perception of body orientation and mental image rotation in microgravity. Aviat Space Environ Med. 1987;58(9 Pt 2):A159–63.

    PubMed  Google Scholar 

  32. Gualtierotti TF, Bracchi F, Rocca E. Orbiting frog otolith experiment (OFO-A) Data reduction and control experimentation. NASA. 1972;CR-62084.

    Google Scholar 

  33. Precht W. Vestibular mechanisms. Annu Rev Neurosci. 1979;2:265–89. doi:10.1146/annurev.ne.02.030179.001405.

    Article  CAS  PubMed  Google Scholar 

  34. Robinson DA. A model of cancellation of the vestibulo-ocular reflex. In: Lennerstrand G, Zee DS, Keller EL, editors. Functional basis of ocular motility disorders. New York, NY: Pergamon Press; 1982. p. 5–13.

    Google Scholar 

  35. Leigh RJ, Zee DS. The neurology of eye movements. 2nd ed. Philadelphia, PA: FA Davis Company; 1991.

    Google Scholar 

  36. Clément G, Wood SJ. Eye movements and motion perception during off-vertical axis rotation after spaceflight. J Vestib Res Equilib Orientat. 2013;23(1):13–22.

    Google Scholar 

  37. Peters BT, Miller CA, Brady RA, Richards JT, Mulavara AP, Bloomberg JJ. Dynamic visual acuity during walking after long-duration spaceflight. Aviat Space Environ Med. 2011;82(4):463–6.

    Article  PubMed  Google Scholar 

  38. Reschke MF, Bloomberg JJ, Harm DL, Huebner WP, Krnavek JM, Paloski WH. Visual-vestibular integration as a function of adaptation to space flight and return to Earth. Houston, TX: NASA Johnson Space Center; 1999. p. 1–41 (Ch 5.3).

    Google Scholar 

  39. Clarke AH, Teiwes W, Scherer H. Evaluation of the torsional VOR in weightlessness. J Vestib Res Equilib Orientat. 1993;3(3):207–18.

    CAS  Google Scholar 

  40. Clarke AH, Teiwes W, Scherer H. Vestibulo-oculomotor testing during the course of a spaceflight mission. Clin Investig. 1993;71(9):740–8.

    Article  CAS  PubMed  Google Scholar 

  41. Reschke MF, Harm DL, Parker DE, Paloski WH. DSO 459: Otolith tilt-translation reinterpretation. Houston, TX: NASA Johnson Space Center; 1991. p. 33–50.

    Google Scholar 

  42. Arrott AP, Young LR. M.I.T./Canadian vestibular experiments on the Spacelab-1 mission: 6. Vestibular reactions to lateral acceleration following ten days of weightlessness. Exp Brain Res. 1986;64(2):347–57.

    Article  CAS  PubMed  Google Scholar 

  43. Parker DE, Reschke MF, Ouyang L, Arrott AP, Lichtenberg BK. Vestibulo-ocular reflex changes following weightlessness and preflight adaptation training. In: Adaptive processes in visual and oculomotor systems. Oxford: Pergamon Press; 1986. p. 103–9.

    Google Scholar 

  44. Kornilova LN, Goncharenko AM, Bodo G, Elkan K, Grigorova V, Manev A. Pathogenesis of sensory disorders in microgravity. The Physiologist. 1991;34(1 Suppl):S36–9.

    CAS  PubMed  Google Scholar 

  45. Gresty M, Leech J. Coordination of the head and eyes in pursuit of predictable and random target motion. Aviat Space Environ Med. 1977;48(8):741–4.

    CAS  PubMed  Google Scholar 

  46. Zangemeister WH, Stark L. Active head rotations and eye-head coordination. Ann N Y Acad Sci. 1981;374:540–59.

    Article  CAS  PubMed  Google Scholar 

  47. Zangemeister WH, Stark L. Gaze latency: variable interactions of head and eye latency. Exp Neurol. 1982;75(2):389–406.

    Article  CAS  PubMed  Google Scholar 

  48. Zangemeister WH, Schlüter D, Kunze K. Compensatory eye movement gain and head-eye latencies change with verbal feedback: voluntary adjustment of gaze types. Adv Otorhinolaryngol. 1988;41:82–8.

    CAS  PubMed  Google Scholar 

  49. Zangemeister WH, Bulgheroni MV, Pedotti A. Normal gait is differentially influenced by the otoliths. J Biomed Eng. 1991;13(6):451–8.

    Article  CAS  PubMed  Google Scholar 

  50. Clément G, Vieville T, Lestienne F, Berthoz A. Modifications of gain asymmetry and beating field of vertical optokinetic nystagmus in microgravity. Neurosci Lett. 1986;63(3):271–4.

    Article  PubMed  Google Scholar 

  51. Clément G, Berthoz A. Cross-coupling between horizontal and vertical eye movements during optokinetic nystagmus and optokinetic afternystagmus elicited in microgravity. Acta Otolaryngol (Stockh). 1990;109(3-4):179–87.

    Article  Google Scholar 

  52. Dai M, McGarvie L, Kozlovskaya I, Raphan T, Cohen B. Effects of spaceflight on ocular counterrolling and the spatial orientation of the vestibular system. Exp Brain Res. 1994;102(1):45–56.

    Article  CAS  PubMed  Google Scholar 

  53. Hawkins R, Zieglschmid J. Clinical aspects of crew health. Washington, DC: NASA Headquarters; 1975. p. 43–81.

    Google Scholar 

  54. Mader TH, Gibson CR, Pass AF, Kramer LA, Lee AG, Fogarty J, et al. Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight. Ophthalmology. 2011;118(10):2058–69.

    Article  PubMed  Google Scholar 

  55. Mader TH, Gibson CR, Pass AF, Lee AG, Killer HE, Hansen HC, et al. Optic disc edema in an astronaut after repeat long-duration space flight. J Neuroophthalmol. 2013 Sep;33(3):249–55.

    Google Scholar 

  56. Frisén L. Swelling of the optic nerve head: a staging scheme. J Neurol Neurosurg Psychiatry. 1982;45:13–8.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wong TY, McIntosh R. Hypertensive retinopathy signs as risk indicators of cardiovascular morbidity and mortality. Br Med Bull. 2005;7374:57–70.

    Article  Google Scholar 

  58. Berrey MM, Shea T, Corey L. Cotton-wool spots in primary HIV infection. J Acquir Immune Defic Syndr Hum Retrovirol. 1998 Oct 1;19(2):197–8.

    Google Scholar 

  59. Matthews DR, Stratton IM, Aldington SJ, Holman RR, Kohner EM. UK Prospective Diabetes Study Group. Risks of progression of retinopathy and vision loss related to tight blood pressure control in type 2 diabetes mellitus: UKPDS 69. Arch Ophthalmol. 2004;122(11):1631–40.

    Article  PubMed  Google Scholar 

  60. Agrawal A, McKibbin M. Purtscher’s retinopathy: epidemiology, clinical features and outcome. Br J Ophthalmol. 2007;91(11):1456–9.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Morris DS, Somner J, Donald MJ, McCormick IJ, Bourne RR, Huang SS, et al. The eye at altitude. Adv Exp Med Biol. 2006;588:249–70.

    Article  PubMed  Google Scholar 

  62. Hansen HC, Helmke K. Validation of the optic nerve sheath response to changing cerebrospinal fluid pressure: ultrasound findings during intrathecal infusion tests. J Neurosurg. 1997;87(1):34–40.

    Article  CAS  PubMed  Google Scholar 

  63. Hansen H-C, Lagrèze W, Krueger O, Helmke K. Dependence of the optic nerve sheath diameter on acutely applied subarachnoidal pressure - an experimental ultrasound study. Acta Ophthalmol (Copenh). 2011;89(6):e528–32.

    Article  Google Scholar 

  64. Berry CA, Homick GL. Findings on American astronauts bearing on the issue of artificial gravity for future manned space vehicles. Aerosp Med. 1973;44(2):163–8.

    CAS  PubMed  Google Scholar 

  65. Homick JL, Miller EF. Apollo flight crew vestibular assessment. Washington, DC: NASA; 1975. p. 323–40.

    Google Scholar 

  66. Homick JL, Reschke MF, Miller EF. The Effects of Prolonged Exposure to Weightlessness on Postural Equilibrium. NASA. 1977;104–112.

    Google Scholar 

  67. Kenyon RV, Young LR. M.I.T./Canadian vestibular experiments on the Spacelab-1 mission: 5. Postural responses following exposure to weightlessness. Exp Brain Res. 1986;64(2):335–46.

    Article  CAS  PubMed  Google Scholar 

  68. Bryanov II, Yemel’yanov MD, Matveyev AD, Mantsev EI, Tarasov IK, Yakovleva IY, et al. Space flights in the Soyuz spacecraft: biomedical research. Redwood City, CA: Kanner Associates; 1976.

    Google Scholar 

  69. Yegorov AD. Results of medical studies during long-term manned flights on the orbital Salyut-6 and Soyuz complex. Washington, DC: NASA; 1979. p. 173–95.

    Google Scholar 

  70. Reschke MF, Anderson DJ, Homick JL. Vestibulospinal reflexes as a function of microgravity. Science. 1984;225(4658):212–4.

    Article  CAS  PubMed  Google Scholar 

  71. Clément G, Gurfinkel VS, Lestienne F, Lipshits MI, Popov KE. Changes of posture during transient perturbations in microgravity. Aviat Space Environ Med. 1985;56(7):666–71.

    PubMed  Google Scholar 

  72. Anderson DJ, Reschke MF, Homick JE, Werness SA. Dynamic posture analysis of Spacelab-1 crew members. Exp Brain Res. 1986;64(2):380–91.

    Article  CAS  PubMed  Google Scholar 

  73. Paloski WH, Black FO, Reschke MF, Calkins DS, Shupert C. Vestibular ataxia following shuttle flights: effects of microgravity on otolith-mediated sensorimotor control of posture. Am J Otol. 1993;14(1):9–17.

    CAS  PubMed  Google Scholar 

  74. Baker JT, Nicogossian AE, Hoffler GW, Johnson RL, Hordinsky JR. Changes in the Achilles tendon reflexes following Skylab missions. Houston, TX: NASA Johnson Space Center; 1977. p. 131–5.

    Google Scholar 

  75. Kozlovskaya IB, Babaev BM, Barmin VA, Beloozerova II, Kreidich YV, Sirota MG. The effect of weightlessness on motor and vestibulo-motor reactions. Physiologist. 1984;27:S111–4.

    Google Scholar 

  76. Watt DG, Money KE, Tomi LM. M.I.T./Canadian vestibular experiments on the Spacelab-1 mission: 3. Effects of prolonged weightlessness on a human otolith-spinal reflex. Exp Brain Res. 1986;64(2):308–15.

    Article  CAS  PubMed  Google Scholar 

  77. Reschke MF, Parker DE. Effects of prolonged weightlessness on self-motion perception and eye movements evoked by roll and pitch. Aviat Space Environ Med. 1987;58(9 Pt 2):A153–8.

    CAS  PubMed  Google Scholar 

  78. Homick JL, Reschke MF. Postural equilibrium following exposure to weightless space flight. Acta Otolaryngol (Stockh). 1977;83:455–64.

    Article  CAS  Google Scholar 

  79. Clark JB, Bacal K. Neurologic concerns. In: Barratt MR, Pool SL, editors. Principles of clinical medicine for space flight. New York, NY: Springer; 2008. p. 361–80.

    Chapter  Google Scholar 

  80. Clément G, Gurfinkel VS, Lestienne F, Lipshits MI, Popov KE. Adaptation of postural control to weightlessness. Exp Brain Res. 1984;57(1):61–72.

    Article  PubMed  Google Scholar 

  81. Clément G, Lestienne F. Adaptive modifications of postural attitude in conditions of weightlessness. Exp Brain Res. 1988;72(2):381–9.

    Article  PubMed  Google Scholar 

  82. Hernandez-Korwo R, Kozlovskaya IB, Kreidich YV, Martinez Fernandez S, Rakhamanov AS. Effect of 9-day space flight on structure and function of human locomotor system. Kosm Biol Aviakosm Med. 1983;17:37–44.

    Google Scholar 

  83. Chekirda IF, Bogdashevskiy AV, Yeremin AV, Kolosov IA. Coordination structure of walking of Soyuz-9 crewmembers before and after flight. Kosm Biol Aviakosm Med. 1971;5:48–52.

    Google Scholar 

  84. Assaiante C, Amblard B. Ontogenesis of head stabilization in space during locomotion in children: influence of visual cues. Exp Brain Res. 1993;93(3):499–515.

    Article  CAS  PubMed  Google Scholar 

  85. Pozzo T, Levik Y, Berthoz A. Head and trunk movements in the frontal plane during complex dynamic equilibrium tasks in humans. Exp Brain Res. 1995;106(2):327–38.

    Article  CAS  PubMed  Google Scholar 

  86. Bloomberg JJ, Peters BT, Smith SL, Huebner WP, Reschke MF. Locomotor head-trunk coordination strategies following space flight. J Vestib Res Equilib Orientat. 1997;7(2-3):161–77.

    Article  CAS  Google Scholar 

  87. Paloski WH, Bloomberg JJ, Reschke MF, Harm DL. Spaceflight-induced changes in posture and locomotion. J Biomech. 1994;27(6):812.

    Article  Google Scholar 

  88. Nashner LM. Strategies for organization of human posture. Vestib Vis Control Posture Locomot Equilib. 1985;1–8.

    Google Scholar 

  89. Keshner EA. Postural abnormalities in vestibular disorders. In: Vestibular rehabilitation. Philadelphia, PA: FA Davis Co; 1994. p. 47–67.

    Google Scholar 

  90. Glasauer S, Amorim MA, Bloomberg JJ, et al. Spatial orientation during locomotion [correction of locomation] following space flight. Acta Astronaut. 1995;36(8-12):423–31.

    Article  CAS  PubMed  Google Scholar 

  91. Bloomberg JJ, Mulavara AP. Changes in walking strategies after spaceflight. IEEE Eng Med Biol Mag Q Mag Eng Med Biol Soc. 2003;22(2):58–62.

    Article  Google Scholar 

  92. Pozzo T, Berthoz A, Lefort L. Head stabilization during various locomotor tasks in humans. I. Normal subjects. Exp Brain Res. 1990;82(1):97–106.

    Article  CAS  PubMed  Google Scholar 

  93. Hirasaki E, Moore ST, Raphan T, Cohen B. Effects of walking velocity on vertical head and body movements during locomotion. Exp Brain Res. 1999;127(2):117–30.

    Article  CAS  PubMed  Google Scholar 

  94. Keshner EA, Cromwell RL, Peterson BW. Mechanisms controlling human head stabilization. II. Head-neck characteristics during random rotations in the vertical plane. J Neurophysiol. 1995;73(6):2302–12.

    CAS  PubMed  Google Scholar 

  95. Voloshin AS. Shock absorption during running and walking. J Am Podiatr Med Assoc. 1988;78(6):295–9. doi:10.7547/87507315-78-6-295.

    Article  CAS  PubMed  Google Scholar 

  96. Smeathers JE. Transient vibrations caused by heel strike. Proc Inst Mech Eng [H]. 1989;203(4):181–6.

    Article  CAS  Google Scholar 

  97. Valiant GA. Transmission and attenuation of heelstrike accelerations. In: Cavanagh PR, editor. Biomechanics of distance running. Champaign: Human Kinetics; 1990. p. 225–48.

    Google Scholar 

  98. Lafortune MA, Lake MJ, Hennig EM. Differential shock transmission response of the human body to impact severity and lower limb posture. J Biomech. 1996;29(12):1531–7.

    Article  CAS  PubMed  Google Scholar 

  99. Ito Y, Corna S, von Brevern M, Bronstein A, Gresty M. The functional effectiveness of neck muscle reflexes for head-righting in response to sudden fall. Exp Brain Res. 1997;117(2):266–72.

    Article  CAS  PubMed  Google Scholar 

  100. McDonald PV, Bloomberg JJ, Layne CS. A review of adaptive change in musculoskeletal impedance during space flight and associated implications for postflight head movement control. J Vestib Res Equilib Orientat. 1997;7(2-3):239–50.

    Article  CAS  Google Scholar 

  101. Whittle MW. Generation and attenuation of transient impulsive forces beneath the foot: a review. Gait Posture. 1999;10(3):264–75.

    Article  CAS  PubMed  Google Scholar 

  102. Mulavara AP, Houser J, Miller C, Bloomberg JJ. Full-body gaze control mechanisms elicited during locomotion: effects of VOR adaptation. J Vestib Res Equilib Orientat. 2005;15(5-6):279–89.

    CAS  Google Scholar 

  103. Holt KJ, Jeng SF, Rr RR, Hamill J. Energetic Cost and Stability During Human Walking at the Preferred Stride Velocity. J Mot Behav. 1995;27(2):164–78. doi:10.1080/00222895.1995.9941708.

    Article  PubMed  Google Scholar 

  104. Demer JL, Amjadi F. Dynamic visual acuity of normal subjects during vertical optotype and head motion. Invest Ophthalmol Vis Sci. 1993;34(6):1894–906.

    CAS  PubMed  Google Scholar 

  105. Hillman EJ, Bloomberg JJ, McDonald PV, Cohen HS. Dynamic visual acuity while walking in normals and labyrinthine-deficient patients. J Vestib Res Equilib Orientat. 1999;9(1):49–57.

    CAS  Google Scholar 

  106. Peters BT, Bloomberg JJ. Dynamic visual acuity using “far” and “near” targets. Acta Otolaryngol (Stockh). 2005;125(4):353–7. doi:10.1080/00016480410024631.

    Article  Google Scholar 

  107. Bloomberg JJ, Reschke MF, Huebner WP, Peters BT. The effects of target distance on eye and head movement during locomotion. Ann N Y Acad Sci. 1992;656:699–707.

    Article  CAS  PubMed  Google Scholar 

  108. Reschke MF, Bloomberg JJ, Harm DL, Paloski WH, Layne C, McDonald V. Posture, locomotion, spatial orientation, and motion sickness as a function of space flight. Brain Res Brain Res Rev. 1998;28(1-2):102–17.

    Article  CAS  PubMed  Google Scholar 

  109. Davids K, Glazier P, Araújo D, Bartlett R. Movement systems as dynamical systems: the functional role of variability and its implications for sports medicine. Sports Med Auckl NZ. 2003;33(4):245–60.

    Article  Google Scholar 

  110. Mulavara AP, Ruttley T, Cohen HS, Peters BT, Miller C, Brady R, et al. Vestibular-somatosensory convergence in head movement control during locomotion after long-duration space flight. J Vestib Res Equilib Orientat. 2012;22(2):153–66.

    CAS  Google Scholar 

  111. Boyle R, Mensinger AF, Yoshida K, Usui S, Intravaia A, Tricas T, et al. Neural readaptation to Earth’s gravity following return from space. J Neurophysiol. 2001;86(4):2118–22.

    CAS  PubMed  Google Scholar 

  112. Moore ST, MacDougall HG, Peters BT, Bloomberg JJ, Curthoys IS, Cohen HS. Modeling locomotor dysfunction following spaceflight with Galvanic vestibular stimulation. Exp Brain Res. 2006;174(4):647–59.

    Article  PubMed  Google Scholar 

  113. Dilda V, Morris TR, Yungher DA, MacDougall HG, Moore ST. Central adaptation to repeated galvanic vestibular stimulation: implications for pre-flight astronaut training. PLoS One. 2014;9(11):112131.

    Article  CAS  Google Scholar 

  114. Pozzo T, Berthoz A, Lefort L, Vitte E. Head stabilization during various locomotor tasks in humans. II. Patients with bilateral peripheral vestibular deficits. Exp Brain Res. 1991;85(1):208–17.

    Article  CAS  PubMed  Google Scholar 

  115. Layne CS, McDonald PV, Bloomberg JJ. Neuromuscular activation patterns during treadmill walking after space flight. Exp Brain Res. 1997;113(1):104–16.

    Article  CAS  PubMed  Google Scholar 

  116. Layne CS, Lange GW, Pruett CJ, McDonald PV, Merkle LA, Mulavara AP, et al. Adaptation of neuromuscular activation patterns during treadmill walking after long-duration space flight. Acta Astronaut. 1998;43(3-6):107–19.

    Article  CAS  PubMed  Google Scholar 

  117. Grogor’eva LS, Kozlovskaia IB. Effect of weightlessness and hypokinesia on the velocity-strength properties of human muscles. Kosm Biol Aviakosm Med. 1987;21(1):27–30.

    PubMed  Google Scholar 

  118. Hayes JC, McBrine JJ, Roper ML, Stricklin MD, Siconolfi SF, Greenisen MC. Effects of Space Shuttle flights on skeletal muscle performance. FASEB J. 1992;6:A1770.

    Google Scholar 

  119. Richards JT, Mulavara AP, Bloomberg JJ. Postural stability during treadmill locomotion as a function of the visual polarity and rotation of a three-dimensional virtual environment. Presence Teleop Virt Environ. 2004;13(3):371–84.

    Article  Google Scholar 

  120. Mulavara AP, Richards JT, Ruttley T, Marshburn A, Nomura Y, Bloomberg JJ. Exposure to a rotating virtual environment during treadmill locomotion causes adaptation in heading direction. Exp Brain Res. 2005;166(2):210–9.

    Article  CAS  PubMed  Google Scholar 

  121. Nomura Y, Mulavara AP, Richards JT, Brady R, Bloomberg JJ. Optic flow dominates visual scene polarity in causing adaptive modification of locomotor trajectory. Brain Res Cogn Brain Res. 2005;25(3):624–31.

    Article  CAS  PubMed  Google Scholar 

  122. Richards JT, Mulavara AP, Bloomberg JJ. The interplay between strategic and adaptive control mechanisms in plastic recalibration of locomotor function. Exp Brain Res. 2007;178(3):326–38.

    Article  PubMed  Google Scholar 

  123. Mulavara AP, Feiveson AH, Fiedler J, Cohen H, Peters BT, Miller C, et al. Locomotor function after long-duration space flight: effects and motor learning during recovery. Exp Brain Res. 2010;202(3):649–59.

    Article  PubMed  Google Scholar 

  124. Seidler RD, Noll DC, Chintalapati P. Bilateral basal ganglia activation associated with sensorimotor adaptation. Exp Brain Res. 2006;175(3):544–55.

    Article  CAS  PubMed  Google Scholar 

  125. Anguera JA, Reuter-Lorenz PA, Willingham DT, Seidler RD. Contributions of spatial working memory to visuomotor learning. J Cogn Neurosci. 2010;22(9):1917–30.

    Article  PubMed  Google Scholar 

  126. Bloomberg JJ, Batson CD, Buxton RE, Feiveson AH, Kofman IS, Lee SMC, et al. Understanding the effects of long-duration space flight on astronant functional task performance. In: American Astronautica Society – ISS research and development conference; 2014.

    Google Scholar 

  127. Mittelstaedt H. Determinants of space perception in space flight. Adv Otorhinolaryngol. 1988;42:18–23.

    CAS  PubMed  Google Scholar 

  128. Harm DL, Parker DE. Perceived self-orientation and self-motion in microgravity, after landing and during preflight adaptation training. J Vestib Res Equilib Orientat. 1993;3(3):297–305.

    CAS  Google Scholar 

  129. Harm DL, Parker DE, Reschke MF, Skinner NC. Relationship between selected orientation rest frame, circular vection and space motion sickness. Brain Res Bull. 1998;47(5):497–501.

    Article  CAS  PubMed  Google Scholar 

  130. Prothero JD, Draper MH, Furness TA, Parker DE, Wells MJ. Do visual background manipulations reduce simulator sickness? In: Proceedings of the international workshop on motion sickness: medical and human factors. Marbella, Spain; 1997. pp. 18–21.

    Google Scholar 

  131. Friederici AD, Levelt WJ. Spatial reference in weightlessness: perceptual factors and mental representations. Percept Psychophys. 1990;47(3):253–66.

    Article  CAS  PubMed  Google Scholar 

  132. Harm DL, Parker DE, Reschke MF. DSO 468: preflight adaptation trainer. Houston, TX: NASA Johnson Space Center; 1994. p. 27–43.

    Google Scholar 

  133. Kornilova LN, Kaspransky RR. Vestibular function and sensory interaction after spaceflight. In: Proceedings of the fifth european symposium on life sciences research in space, vol. SP-366. Arcachon: CNES/ESA; 1994. p. 345–50.

    Google Scholar 

  134. Massion J, Popov K, Fabre JC, Rage P, Gurfinkel V. Is the erect posture in microgravity based on the control of trunk orientation or center of mass position? Exp Brain Res. 1997;114(2):384–9.

    Article  CAS  PubMed  Google Scholar 

  135. Iakovleva II, Kornilova LN, Tarasov IK, Alekseev VN. Results of a study of vestibular function and space perception in cosmonauts. Kosm Biol Aviakosm Med. 1982;16(1):20–6.

    PubMed  Google Scholar 

  136. Oman CM. The role of static visual-orientation cues in the etiology of space motion sickness. In: Symposium on vestibular organs and altered environments, Houston, TX; 1988.

    Google Scholar 

  137. Graybiel A, Kellogg RS. Inversion illusion in parabolic flight: its probable dependence on otolith function. Aerosp Med. 1967;38(11):1099–103.

    CAS  PubMed  Google Scholar 

  138. Lackner JR, DiZio P. Multisensory, cognitive, and motor influences on human spatial orientation in weightlessness. J Vestib Res Equilib Orientat. 1993;3(3):361–72.

    CAS  Google Scholar 

  139. Reschke MF, Kornilova LN, Harm DL, Bloomberg JJ, Paloski WH. Neurosensory and sensory-motor function. In: Huntoon CSL, Antipov VV, Grigoriev AI, editors. Humans in spaceflight, book 1, Space biology and medicine, vol. 3. Reston, VA: American Institute of Aeronautics and Astronautics; 1996. p. 135–93.

    Google Scholar 

  140. Mittelstaedt H. In search of the cuase of the “inversion illusion.” In: Physiological adaptation of man in space: 7th international “man in space” symposium, Houston, TX; 1986.

    Google Scholar 

  141. Mittelstaedt H. Somatic versus vestibular gravity reception in man. Ann N Y Acad Sci. 1992;656:124–39.

    Article  CAS  PubMed  Google Scholar 

  142. Mittelstaedt H. In-flight and postflight results on the cessation of inversion illusion and space sickness. In: Norderney symposium on scientific results of the German spacelab mission D-1. Norderney, Germany; 1986.

    Google Scholar 

  143. Howard IP. Human visual orientation. Chichester: John Wiley & Sons; 1982.

    Google Scholar 

  144. Finke RA, Shepard RN. Visual functions of mental imagery. Representations. 1986;37:8.

    Google Scholar 

  145. Corballis MC, Zbrodoff NJ, Shetzer LI, Butler PB. Decisions about identity and orientation of rotated letters and digits. Mem Cognit. 1978;6(2):98–107.

    Article  CAS  PubMed  Google Scholar 

  146. Leone G, Lipshits MI, Matsakis Y, Gurfinkel VS, Berthoz A. Influence of weightlessness upon mental rotation and detection of bitlateral symmetry. In: 5th European symposium on life sciences research in space. Arcachon, France; 1993.

    Google Scholar 

  147. Shepard RN, Metzler J. Mental rotation of three-dimensional objects. Science. 1971;171(3972):701–3.

    Article  CAS  PubMed  Google Scholar 

  148. Friederici AD, Levelt WJ. Resolving perceptual conflicts: the cognitive mechanism of spatial orientation. Aviat Space Environ Med. 1987;58(9 Pt 2):A164–9.

    CAS  PubMed  Google Scholar 

  149. Leone G, Lipshits M, Gurfinkel V, Berthoz A. Is there an effect of weightlessness on mental rotation of three-dimensional objects? Brain Res Cogn Brain Res. 1995;2(4):255–67.

    Article  CAS  PubMed  Google Scholar 

  150. Clément G, Skinner A, Lathan C. Distance and Size Perception in Astronauts during Long-Duration Spaceflight. Life Basel Switz. 2013;3(4):524–37.

    Google Scholar 

  151. Young LR, Oman CM, Watt DG, Money KE, Lichtenberg BK, Kenyon RV, et al. M.I.T./Canadian vestibular experiments on the Spacelab-1 mission: 1. Sensory adaptation to weightlessness and readaptation to one-g: an overview. Exp Brain Res. 1986;64(2):291–8.

    CAS  PubMed  Google Scholar 

  152. Young LR, Shelhamer M. Microgravity enhances the relative contribution of visually-induced motion sensation. Aviat Space Environ Med. 1990;61(6):525–30.

    CAS  PubMed  Google Scholar 

  153. Mueller C, Kornilova L, Wiest G, Steinhoff N, Deechke L. Results from vertical vection experiments in short and long-term space flights. In: 5th European symposium on life sciences research in space; 1993.

    Google Scholar 

  154. Oman CM, Lichtenberg BK, Money KE. Space motion sickness monitoring experiment: Spacelab 1. In: Crampton GH, editor. Motion and space sickness. Boca Raton, FL: CRC Press; 1990. p. 217–46.

    Google Scholar 

  155. Thornton WE, Moore TP, Pool SL, Vanderploeg J. Clinical characterization and etiology of space motion sickness. Aviat Space Environ Med. 1987;58(9 Pt 2):A1–8.

    CAS  PubMed  Google Scholar 

  156. Davis JR, Vanderploeg JM, Santy PA, Jennings RT, Stewart DF. Space motion sickness during 24 flights of the space shuttle. Aviat Space Environ Med. 1988;59(12):1185–9.

    CAS  PubMed  Google Scholar 

  157. Thornton WE, Linder BJ, Moore TP, Pool SL. Gastrointestinal motility in space motion sickness. Aviat Space Environ Med. 1987;58(9 Pt 2):A16–21.

    CAS  PubMed  Google Scholar 

  158. Harris Jr BA, Billica RD, Bishop SL, Blackwell T, Layne CS, Harm DL, et al. Physical examination during space flight. Mayo Clin Proc. 1997;72(4):301–8.

    Article  PubMed  Google Scholar 

  159. Homick JL. Motion sickness: general backgrounds and methods. In: Kohl RL, editor. Proceedings of the space adaptation syndrome drug workshop. Houston, TX: NASA, Space Biomedical Research Institute; 1985. p. 9–19.

    Google Scholar 

  160. Reschke MF, Cohen HS, Cerisano JM, Clayton JA, Cromwell R, Danielson RW, Hwang EY, Tingen C, Allen JR, Tomko DL. Effects of sex and gender on adaptation to space: neurosensory systems. J Womens Health (Larchmt). 2014;23(11):959–62.

    Article  Google Scholar 

  161. Gorgiladze GI, Brianov II. Space motion sickness. Kosm Biol Aviakosm Med. 1989;23(3):4–14.

    CAS  PubMed  Google Scholar 

  162. Jennings RT. Managing space motion sickness. J Vestib Res Equilib Orientat. 1998;8(1):67–70.

    Article  CAS  Google Scholar 

  163. Barrett RJ, Lokhandwala MF. Presynaptic dopamine receptor stimulation in the cardiovascular actions of lergotrile. J Pharmacol Exp Ther. 1981;217(3):660–5.

    CAS  PubMed  Google Scholar 

  164. Parker DE, Tjernström O, Ivarsson A, Gulledge WL, Poston RL. Physiological and behavioral effects of tilt-induced body fluid shifts. Aviat Space Environ Med. 1983;54(5):402–9.

    CAS  PubMed  Google Scholar 

  165. Reason JT, Brand JJ. Motion sickness. London: Academic; 1975.

    Google Scholar 

  166. Treisman M. Motion sickness: an evolutionary hypothesis. Science. 1977;197(4302):493–5.

    Article  CAS  PubMed  Google Scholar 

  167. Von Baumgarten RJ, Wetzig J, Vogel H, Kass JR. Static and dynamic mechanisms of space vestibular malaise. The Physiologist. 1982;25(6):S33–6.

    Google Scholar 

  168. Kornilova LN, Yakovleva IY, Tarasov IK, Gorgiladze GI. Vestibular dysfunction in cosmonauts during adaption to zero-g and readaptation to 1 g. Physiologist. 1983;26:S35–40.

    Google Scholar 

  169. Parker DE, Parker KL. Adaptation to the simulated stimulus rearrangement of weightlessness. In: Crampton GH, editor. Motion and space sickness. Boca Raton, FL: CRC Press; 1990. p. 247–62.

    Google Scholar 

  170. Young LR, Oman C, Money KE, Watt DGD. Scientific and technical proposal for vestibular experiments in Spacelab. Cambridge, MA: Man-Vehicle Laboratory, Massachusetts Institute of Technology; 1976.

    Google Scholar 

  171. Oman CM. Space motion sickness and vestibular experiments in Spacelab. In: 12th AIAA, SAE, ASME, AIChE, and ASMA, international conference on environmental systems, San Diego, CA, SAE technical paper; 1982.

    Google Scholar 

  172. Merfeld DM. Rotation otolith tilt-translation reinterpretation (ROTTR) hypothesis: a new hypothesis to explain neurovestibular spaceflight adaptation. J Vestib Res Equilib Orientat. 2003;13(4-6):309–20.

    Google Scholar 

  173. Diamond SG, Markham CH. Prediction of space motion sickness susceptibility by disconjugate eye torsion in parabolic flight. Aviat Space Environ Med. 1991;62(3):201–5.

    CAS  PubMed  Google Scholar 

  174. Davis JR, Jennings RT, Beck BG, Bagian JP. Treatment efficacy of intramuscular promethazine for space motion sickness. Aviat Space Environ Med. 1993;64(3 Pt 1):230–3.

    CAS  PubMed  Google Scholar 

  175. Money KE, Lackner JR, Cheung RSK. The autonomic nervous system and motion sickness. In: Vestibular autonomic regulation. Boca Raton, FL: CRC Press; 1996. p. 147–73.

    Google Scholar 

  176. Sved AF, Ruggiero DA. The autonomic nervous system structure and function. In: Vestibular autonomic regulation. Boca Raton, FL: CRC Press; 1996. p. 25–51.

    Google Scholar 

  177. Ito J, Honjo I. Central fiber connections of the vestibulo-autonomic reflex arc in cats. Acta Otolaryngol (Stockh). 1990;110(5-6):379–85.

    Article  CAS  Google Scholar 

  178. Onai T, Takayama K, Miura M. Projections to areas of the nucleus tractus solitarii related to circulatory and respiratory responses in cats. J Auton Nerv Syst. 1987;18(2):163–75.

    Article  CAS  PubMed  Google Scholar 

  179. Barron KD, Chokroverty S (1993) Anatomy of the autonomic nervous system: brain and brainstem. Low PA (ed) Clinical autonomic disorders: evaluation and management. 1993. pp. 3–15. Little Brown and Company, Boston.

    Google Scholar 

  180. Yates BJ. Vestibular influences on the sympathetic nervous system. Brain Res Brain Res Rev. 1992;17(1):51–9.

    Article  CAS  PubMed  Google Scholar 

  181. Previc FH. Do the organs of the labyrinth differentially influence the sympathetic and parasympathetic systems? Neurosci Biobehav Rev. 1993;17(4):397–404.

    Article  CAS  PubMed  Google Scholar 

  182. Yates BJ, Goto T, Bolton PS. Responses of neurons in the rostral ventrolateral medulla of the cat to natural vestibular stimulation. Brain Res. 1993;601(1-2):255–64.

    Article  CAS  PubMed  Google Scholar 

  183. Yates BJ, Miller AD. Vestibular autonomic regulation. Boca Raton, FL: CRC Press; 1996.

    Google Scholar 

  184. Wood CD, Stewart JJ, Wood MJ, Struve FA, Straumanis JJ, Mims ME, et al. Habituation and motion sickness. J Clin Pharmacol. 1994;34(6):628–34.

    Article  CAS  PubMed  Google Scholar 

  185. Balaban CD. The role of the cerebellum in vestibular autonomic regulation. In: Yates BJ, Miller AD, editors. Vestibular autonomic regulation. Boca Raton, FL: CRC Press; 1996. p. 127–44.

    Google Scholar 

  186. Cucinotta FA, Alp M, Sulzman FM, Wang M. Space radiation risks to the central nervous system. Life Sci Space Res. 2014;2:54–69. doi:10.1016/j.lssr.2014.06.003.

    Article  Google Scholar 

  187. Nelson GA. Neurological effects of space radiation. Gravitational Space Biol. 2009;22:33–8.

    Google Scholar 

  188. Fischer CL, Johnson PC, Berry CA. Red blood cell mass and plasma volume changes in manned space flight. JAMA. 1967;200(7):579–83.

    Article  CAS  PubMed  Google Scholar 

  189. Johnson PC, Driscoll TB, LeBlanc AD. Blood volume changes. In: Johnston RS, Dietlein LF, editors. Biomedical results from Skylab. NASA SP-377. Washington, DC: NASA; 1977. p. 235–41.

    Google Scholar 

  190. Bungo MW, Charles JB, Johnson PC. Cardiovascular deconditioning during space flight and the use of saline as a countermeasure to orthostatic intolerance. Aviat Space Environ Med. 1985;56(10):985–90.

    CAS  PubMed  Google Scholar 

  191. Charles JB, Lathers CM. Cardiovascular adaptation to spaceflight. J Clin Pharmacol. 1991;31(10):1010–23.

    Article  CAS  PubMed  Google Scholar 

  192. Johnson RL, Nicogossian AE, Bergman SA, Hoffler GW. Lower body negative pressure: the second manned Skylab mission. Aviat Space Environ Med. 1976;47(4):347–53.

    CAS  PubMed  Google Scholar 

  193. Buckey JC, Lane LD, Plath G, Gaffney FA, Baisch F, Blomqvist CG. Effects of head-down tilt for 10 days on the compliance of the leg. Acta Physiol Scand Suppl. 1992;604:53–9.

    CAS  PubMed  Google Scholar 

  194. Fritsch JM, Charles JB, Bennett BS, Jones MM, Eckberg DL. Short-duration spaceflight impairs human carotid baroreceptor-cardiac reflex responses. J Appl Physiol (Bethesda, MD, 1985). 1992;73(2):664–71.

    CAS  Google Scholar 

  195. Fritsch-Yelle JM, Charles JB, Jones MM, Beightol LA, Eckberg DL. Spaceflight alters autonomic regulation of arterial pressure in humans. J Appl Physiol (Bethesda, MD, 1985). 1994;77(4):1776–83.

    CAS  Google Scholar 

  196. Buckey JC, Lane LD, Levine BD, Watenpaugh DE, Wright SJ, Moore WE, et al. Orthostatic intolerance after spaceflight. J Appl Physiol (Bethesda, MD, 1985). 1996;81(1):7–18.

    Google Scholar 

  197. Fritsch-Yelle JM, Whitson PA, Bondar RL, Brown TE. Subnormal norepinephrine release relates to presyncope in astronauts after spaceflight. J Appl Physiol (Bethesda, MD, 1985). 1996;81(5):2134–41.

    CAS  Google Scholar 

  198. Doba N, Reis DJ. Role of the cerebellum and the vestibular apparatus in regulation of orthostatic reflexes in the cat. Circ Res. 1974;40(4):9–18.

    Article  Google Scholar 

  199. Gillingham KK, Freeman JJ, McNee RC. Transfer functions for eye-level blood pressure during + Gz stress. Aviat Space Environ Med. 1977;48(11):1026–34.

    CAS  PubMed  Google Scholar 

  200. Essandoh LK, Duprez DA, Shepherd JT. Reflex constriction of human limb resistance vessels to head-down neck flexion. J Appl Physiol (Bethesda, MD, 1985). 1988;64(2):767–70.

    CAS  Google Scholar 

  201. Satake H, Matsunami K, Miyata H. The vestibulo-autonomic function viewed from cardiac responses in centrifuged monkeys. Acta Oto-Laryngol Suppl. 1991;481:543–7.

    Article  CAS  Google Scholar 

  202. Convertino VA, Previc FH, Ludwig DA, Engelken EJ. Effects of vestibular and oculomotor stimulation on responsiveness of the carotid-cardiac baroreflex. Am J Physiol. 1997;273(2 Pt 2):R615–22.

    CAS  PubMed  Google Scholar 

  203. Ray CA, Hume KM, Shortt TL. Skin sympathetic outflow during head-down neck flexion in humans. Am J Physiol. 1997;273(3 Pt 2):R1142–6.

    CAS  PubMed  Google Scholar 

  204. Shortt TL, Ray CA. Sympathetic and vascular responses to head-down neck flexion in humans. Am J Physiol. 1997;272(4 Pt 2):H1780–4.

    CAS  PubMed  Google Scholar 

  205. Woodring SF, Rossiter CD, Yates BJ. Pressor response elicited by nose-up vestibular stimulation in cats. Exp Brain Res. 1997;113(1):165–8.

    Article  CAS  PubMed  Google Scholar 

  206. Yates BJ, Kerman IA. Post-spaceflight orthostatic intolerance: possible relationship to microgravity-induced plasticity in the vestibular system. Brain Res Brain Res Rev. 1998;28(1-2):73–82.

    Article  CAS  PubMed  Google Scholar 

  207. Yates BJ. Autonomic reaction to vestibular damage. Otolaryngol Head Neck Surg. 1998;119(1):106–12.

    Article  CAS  PubMed  Google Scholar 

  208. Yates BJ, Miller AD. Physiological evidence that the vestibular system participates in autonomic and respiratory control. J Vestib Res Equilib Orientat. 1998;8(1):17–25.

    Article  CAS  Google Scholar 

  209. Yates BJ, Miller AD, Lucot JB. Physiological basis and pharmacology of motion sickness: an update. Brain Res Bull. 1998;47(5):395–406.

    Article  CAS  PubMed  Google Scholar 

  210. Vogel H, Kass JR. European vestibular experiments on the Spacelab-1 mission: 7. Ocular counterrolling measurements pre- and post-flight. Exp Brain Res. 1986;64(2):284–90.

    Article  CAS  PubMed  Google Scholar 

  211. Ross MD. Morphological changes in rat vestibular system following weightlessness. J Vestib Res Equilib Orientat. 1993;3(3):241–51.

    CAS  Google Scholar 

  212. Ross MD. A spaceflight study of synaptic plasticity in adult rat vestibular maculas. Acta Oto-Laryngol Suppl. 1994;516:1–14.

    CAS  Google Scholar 

  213. Normand H, Etard O, Denise P. Otolithic and tonic neck receptors control of limb blood flow in humans. J Appl Physiol (Bethesda, MD, 1985). 1997;82(6):1734–8.

    CAS  Google Scholar 

  214. Khilov KL. Evaluation of vestibular function in aviators and cosmonauts. Kosm Biol Aviakosm Med. 1974;8(5):47–52.

    CAS  PubMed  Google Scholar 

  215. Lapayev EV, Vorobyev OA. The problem of vestibular physiology in aerospace medicine and prospects for its solution. In: Gazenko OG, editor. Eighth all-union conference on space biology and aerospace medicine. Kaluga: USSR; 1986. p. 85–6.

    Google Scholar 

  216. Clément G, Moore ST, Raphan T, Cohen B. Perception of tilt (somatogravic illusion) in response to sustained linear acceleration during space flight. Exp Brain Res. 2001;138(4):410–8.

    Article  PubMed  Google Scholar 

  217. Reschke MF. Statistical prediction of space motion sickness. In: Crampton GH, editor. Motion and space sickness. Boca Raton, FL: CRC Press; 1990. p. 263–315.

    Google Scholar 

  218. Santy PA, Bungo MW. Pharmacologic considerations for Shuttle astronauts. J Clin Pharmacol. 1991;31(10):931–3.

    Article  CAS  PubMed  Google Scholar 

  219. Aizikov GS, Kreidich YV, Grigoryan RA. Sensory interaction and methods of non-medicinal prophylaxis of space motion sickness. The Physiologist. 1991;34(1 Suppl):S220–3.

    CAS  PubMed  Google Scholar 

  220. Harm DL, Reschke MR, Parker DE. Visual-vestibular integration motion perception reporting. Houston, TX: NASA Johnson Space Center; 1999.

    Google Scholar 

  221. Cowings PS, Suter S, Toscano WB, Kamiya J, Naifeh K. General autonomic components of motion sickness. Psychophysiology. 1986;23(5):542–51.

    Article  CAS  PubMed  Google Scholar 

  222. Cowings PS. Autogenic-feedback training: a treatment for motion and space sickness. In: Crampton GH, editor. Motion and space sickness. Boca Raton, FL: CRC Press; 1990. p. 353–72.

    Google Scholar 

  223. Wood SJ, Loehr JA, Guilliams ME. Sensorimotor reconditioning during and after spaceflight. NeuroRehabilitation. 2011;29(2):185–95.

    CAS  PubMed  Google Scholar 

  224. Jain V, Wood SJ, Feiveson AH, Black FO, Paloski WH. Diagnostic accuracy of dynamic posturography testing after short-duration spaceflight. Aviat Space Environ Med. 2010;81(7):625–31.

    Article  PubMed  Google Scholar 

  225. Gurovskiĭ NN, Eremin AV, Gazenko OG, Egorov AD, Brianov II. Medical studies during flights of “Soiuz-12”, “Soiuz-13”, “Soiuz-14” space ships and “Saliut-3” orbital station. Kosm Biol Aviakosm Med. 1975;9(2):48–54.

    PubMed  Google Scholar 

  226. Vorob’ev EI, Gazenko OG, Gurovskiĭ NN, Nefedov IG. Egorov AD. Kosm Biol Aviakosm Med. 1975;10:3–18. Preliminary results of medical research completed during the flight of the second expedition of orbital station “Salyut-4”.

    Google Scholar 

  227. Matsnev EI, Yakovleva IY, Tarasov IK, Alekseev VN, Kornilova LN, Mateev AD, et al. Space motion sickness: phenomenology, countermeasures, and mechanisms. Aviat Space Environ Med. 1983;54(4):312–7.

    CAS  PubMed  Google Scholar 

  228. Matveev AD. Experience with the development of methods of studying space sickness. Kosm Biol Aviakosm Med. 1987;21(3):83–8.

    CAS  PubMed  Google Scholar 

  229. Reschke MF, Somers JT, Ford G, Krnavek JM, Hwang EJ, Leigh RJ, et al. Stroboscopic vision as a treatment for retinal slip induced motion sickness. In: First international symposium on visually induced motion sickness, fatigue, and photosensitive epileptic seizures (VIMS2007), Vol 1. Hong Kong; 2007. pp. 51–8.

    Google Scholar 

  230. Clément G, Wood SJ. Motion perception during tilt and translation after space flight. Acta Astronaut. 2013;92(1):48–52. doi:10.1016/j.actaastro.2012.03.011.

    Article  Google Scholar 

  231. Melnik CG, Shakula AV, Ivanov VV. The use of electrotranquilization method increasing vestibular tolerance in humans. Voen Med Zh. 1986;8:42–5.

    Google Scholar 

  232. Nekhaev AS, Vlasov VD, Ivanov VV. Use of central electroanalgesia to restore the body’s functional state in motion sickness. Kosm Biol Aviakosm Med. 1986;20(4):42–4.

    CAS  PubMed  Google Scholar 

  233. Poliakov BI. Discrete adaptation to conditions of sensory conflict. Kosm Biol Aviakosm Med. 1987;21(5):82–6.

    CAS  PubMed  Google Scholar 

  234. Ivanov AL, Snitko VM. Use of reflexotherapy in the prevention and treatment of motion sickness. Voen Med Zh. 1985;8:56–7.

    Google Scholar 

  235. Hu S, Stern RM, Koch KL. Electrical acustimulation relieves vection-induced motion sickness. Gastroenterology. 1992;102(6):1854–8.

    Article  CAS  PubMed  Google Scholar 

  236. Hu S, Stritzel R, Chandler A, Stern RM. P6 acupressure reduces symptoms of vection-induced motion sickness. Aviat Space Environ Med. 1995;66(7):631–4.

    CAS  PubMed  Google Scholar 

  237. Lin X, Liang J, Ren J, Mu F, Zhang M, Chen JD. Electrical stimulation of acupuncture points enhances gastric myoelectrical activity in humans. Am J Gastroenterol. 1997;92(9):1527–30.

    CAS  PubMed  Google Scholar 

  238. Bacal K, Billica R, Bishop S. Neurovestibular symptoms following space flight. J Vestib Res Equilib Orientat. 2003;13(2-3):93–102.

    Google Scholar 

Download references

Acknowledgements

We would like to give a special thanks to Ms. Jane Krauhs for her expertise and attention to detail in editing this chapter, and to Dr. Donald Parker for his refinement of the otolith tilt-translation reinterpretation hypothesis included in this chapter. We are particularly grateful for Ms. Jody Krnavek Cerisano and Ms. Liz Fisher who often sacrificed their personal life to collect and analyze much of the data collected by the NASA JSC Neuroscience Laboratory. Also special thanks to our colleagues at MIT, Case Western Reserve University, and Baylor College of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Millard F. Reschke BA, MS, PhD .

Editor information

Editors and Affiliations

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Ch 9_Neurology (PDF 1441 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Reschke, M.F. et al. (2016). Neurology. In: Nicogossian, A., Williams, R., Huntoon, C., Doarn, C., Polk, J., Schneider, V. (eds) Space Physiology and Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6652-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6652-3_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-6650-9

  • Online ISBN: 978-1-4939-6652-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics