Skip to main content

Functional Principles of Whisker-Mediated Touch Perception

  • Chapter
  • First Online:
Sensorimotor Integration in the Whisker System

Abstract

In the progression of events wherein the rodent whisker sensory system constructs a percept of the world around the animal, neurons exercise distinct functional roles; here we review recent progress in our understanding of the principles for response organization in the system. The whisker’s mechanical properties and anchoring to the follicle shape the forces transmitted to specialized receptors. The sensory and motor systems are intimately interconnected, giving rise to two forms of whisker-mediated sensation: generative and receptive. The sensory pathway exemplifies fundamental concepts in computation and coding: hierarchical feature selectivity, sparseness, adaptive representations, and population coding. The central processing of signals can be considered a sequence of filters. At the level of cortex, neurons represent object features by a coordinated population code which encompasses cells with heterogeneous properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DiCarlo JJ, Zoccolan D, Rust NC (2012) How does the brain solve visual object recognition? Neuron 73(3):415–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Diamond ME, Arabzadeh E (2013) Whisker sensory system—from receptor to decision. Prog Neurobiol 103:28–40

    Article  PubMed  Google Scholar 

  3. Carandini M (2012) From circuits to behavior: a bridge too far? Nat Neurosci 15(4):507–509

    Article  CAS  PubMed  Google Scholar 

  4. Hartmann MJ (2011) A night in the life of a rat: vibrissal mechanics and tactile exploration. Ann N Y Acad Sci 1225:110–118

    Article  PubMed  Google Scholar 

  5. Kleinfeld D, Deschenes M (2011) Neuronal basis for object location in the vibrissa scanning sensorimotor system. Neuron 72(3):455–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Deschenes M, Moore J, Kleinfeld D (2012) Sniffing and whisking in rodents. Curr Opin Neurobiol 22(2):243–250

    Article  CAS  PubMed  Google Scholar 

  7. Diamond ME, von Heimendahl M, Knutsen PM, Kleinfeld D, Ahissar E (2008) ‘Where’ and ‘what’ in the whisker sensorimotor system. Nat Rev Neurosci 9(8):601–612

    Article  CAS  PubMed  Google Scholar 

  8. Lee S, Carvell GE, Simons DJ (2008) Motor modulation of afferent somatosensory circuits. Nat Neurosci 11(12):1430–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Matyas F, Sreenivasan V, Marbach F, Wacongne C, Barsy B, Mateo C et al (2010) Motor control by sensory cortex. Science 330(6008):1240–1243

    Article  CAS  PubMed  Google Scholar 

  10. Huber D, Gutnisky DA, Peron S, O’Connor DH, Wiegert JS, Tian L et al (2012) Multiple dynamic representations in the motor cortex during sensorimotor learning. Nature 484(7395):473–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Petreanu L, Gutnisky DA, Huber D, Xu NL, O’Connor DH, Tian L et al (2012) Activity in motor-sensory projections reveals distributed coding in somatosensation. Nature 489(7415):299–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Feldmeyer D, Brecht M, Helmchen F, Petersen CC, Poulet JF, Staiger JF et al (2013) Barrel cortex function. Prog Neurobiol 103:3–27

    Article  PubMed  Google Scholar 

  13. Kleinfeld D, Ahissar E, Diamond ME (2006) Active sensation: insights from the rodent vibrissa sensorimotor system. Curr Opin Neurobiol 16(4):435–444

    Article  CAS  PubMed  Google Scholar 

  14. Dorfl J (1982) The musculature of the mystacial vibrissae of the white mouse. J Anat 135(Pt 1):147–154

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Dorfl J (1985) The innervation of the mystacial region of the white mouse: a topographical study. J Anat 142:173–184

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Rice FL, Mance A, Munger BL (1986) A comparative light microscopic analysis of the sensory innervation of the mystacial pad. I. Innervation of vibrissal follicle-sinus complexes. J Comp Neurol 252(2):154–174

    Article  CAS  PubMed  Google Scholar 

  17. Rice FL, Kinnman E, Aldskogius H, Johansson O, Arvidsson J (1993) The innervation of the mystacial pad of the rat as revealed by PGP 9.5 immunofluorescence. J Comp Neurol 337(3):366–385

    Article  CAS  PubMed  Google Scholar 

  18. Ebara S, Kumamoto K, Matsuura T, Mazurkiewicz JE, Rice FL (2002) Similarities and differences in the innervation of mystacial vibrissal follicle-sinus complexes in the rat and cat: a confocal microscopic study. J Comp Neurol 449(2):103–119

    Article  PubMed  Google Scholar 

  19. Bagdasarian K, Szwed M, Knutsen PM, Deutsch D, Derdikman D, Pietr M et al (2013) Pre-neuronal morphological processing of object location by individual whiskers. Nat Neurosci 16(5):622–631

    Article  CAS  PubMed  Google Scholar 

  20. Pammer L, O’Connor DH, Hires SA, Clack NG, Huber D, Myers EW et al (2013) The mechanical variables underlying object localization along the axis of the whisker. J Neurosci 33(16):6726–6741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Williams CM, Kramer EM (2010) The advantages of a tapered whisker. PLoS ONE 5(1):e8806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Hires SA, Pammer L, Svoboda K, Golomb D (2013) Tapered whiskers are required for active tactile sensation. Elife 2:e01350

    Article  PubMed  PubMed Central  Google Scholar 

  23. Voges D, Carl K, Klauer GJ, Uhlig R, Schilling C, Behn C et al (2012) Structural Characterization of the Whisker System of the Rat. Sensors J IEEE 12(2):332–339

    Article  Google Scholar 

  24. Bermejo R, Houben D, Zeigler HP (1998) Optoelectronic monitoring of individual whisker movements in rats. J Neurosci Methods 83(2):89–96

    Article  CAS  PubMed  Google Scholar 

  25. Harvey MA, Bermejo R, Zeigler HP (2001) Discriminative whisking in the head-fixed rat: optoelectronic monitoring during tactile detection and discrimination tasks. Somatosens Mot Res 18(3):211–222

    Article  CAS  PubMed  Google Scholar 

  26. Knutsen PM, Derdikman D, Ahissar E (2005) Tracking whisker and head movements in unrestrained behaving rodents. J Neurophysiol 93(4):2294–2301

    Article  PubMed  Google Scholar 

  27. Voigts J, Sakmann B, Celikel T (2008) Unsupervised whisker tracking in unrestrained behaving animals. J Neurophysiol 100(1):504–515

    Article  PubMed  Google Scholar 

  28. Ritt JT, Andermann ML, Moore CI (2008) Embodied information processing: vibrissa mechanics and texture features shape micromotions in actively sensing rats. Neuron 57(4):599–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wolfe J, Hill DN, Pahlavan S, Drew PJ, Kleinfeld D, Feldman DE (2008) Texture coding in the rat whisker system: slip-stick versus differential resonance. PLoS Biol 6(8):e215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Perkon I, Kosir A, Itskov PM, Tasic J, Diamond ME (2011) Unsupervised quantification of whisking and head movement in freely moving rodents. J Neurophysiol 105(4):1950–1962

    Article  PubMed  Google Scholar 

  31. Clack NG, O’Connor DH, Huber D, Petreanu L, Hires A, Peron S et al (2012) Automated tracking of whiskers in videos of head fixed rodents. PLoS Comput Biol 8(7):e1002591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mitchinson B, Martin CJ, Grant RA, Prescott TJ (2007) Feedback control in active sensing: rat exploratory whisking is modulated by environmental contact. Proc Biol Sci 274(1613):1035–1041

    Google Scholar 

  33. Grant RA, Mitchinson B, Fox CW, Prescott TJ (2009) Active touch sensing in the rat: anticipatory and regulatory control of whisker movements during surface exploration. J Neurophysiol 101(2):862–874

    Article  PubMed  PubMed Central  Google Scholar 

  34. Birdwell JA, Solomon JH, Thajchayapong M, Taylor MA, Cheely M, Towal RB et al (2007) Biomechanical models for radial distance determination by the rat vibrissal system. J Neurophysiol 98(4):2439–2455

    Article  PubMed  Google Scholar 

  35. Quist BW, Hartmann MJ (2012) Mechanical signals at the base of a rat vibrissa: the effect of intrinsic vibrissa curvature and implications for tactile exploration. J Neurophysiol 107(9):2298–2312

    Article  PubMed  PubMed Central  Google Scholar 

  36. Boubenec Y, Shulz DE, Debregeas G (2012) Whisker encoding of mechanical events during active tactile exploration. Front Behav Neurosci 6:74

    Article  PubMed  PubMed Central  Google Scholar 

  37. Solomon JH, Hartmann MJ (2011) Radial distance determination in the rat vibrissal system and the effects of Weber’s law. Philos Trans R Soc Lond B Biol Sci 366(1581):3049–3057

    Article  PubMed  PubMed Central  Google Scholar 

  38. Maksimovic S, Nakatani M, Baba Y, Nelson AM, Marshall KL, Wellnitz SA et al (2014) Epidermal Merkel cells are mechanosensory cells that tune mammalian touch receptors. Nature 509(7502):617–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Arabzadeh E, Zorzin E, Diamond ME (2005) Neuronal encoding of texture in the whisker sensory pathway. PLoS Biol 3(1):e17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Lottem E, Azouz R (2008) Dynamic translation of surface coarseness into whisker vibrations. J Neurophysiol 100(5):2852–2865

    Article  PubMed  Google Scholar 

  41. Jadhav SP, Wolfe J, Feldman DE (2009) Sparse temporal coding of elementary tactile features during active whisker sensation. Nat Neurosci 12(6):792–800

    Article  CAS  PubMed  Google Scholar 

  42. Lottem E, Azouz R (2009) Mechanisms of tactile information transmission through whisker vibrations. J Neurosci 29(37):11686–11697

    Article  CAS  PubMed  Google Scholar 

  43. Jadhav SP, Feldman DE (2010) Texture coding in the whisker system. Curr Opin Neurobiol 20(3):313–318

    Article  CAS  PubMed  Google Scholar 

  44. Morita T, Kang H, Wolfe J, Jadhav SP, Feldman DE (2011) Psychometric curve and behavioral strategies for whisker-based texture discrimination in rats. PLoS ONE 6(6):e20437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zuo Y, Perkon I, Diamond ME (2011) Whisking and whisker kinematics during a texture classification task. Philos Trans R Soc Lond B Biol Sci 366(1581):3058–3069

    Article  PubMed  PubMed Central  Google Scholar 

  46. Melaragno HP, Montagna W (1953) The tactile hair follicles in the mouse. Anat Rec 115(2):129–49

    Article  CAS  PubMed  Google Scholar 

  47. Rice FL (1993) Structure, vascularization, and innervation of the mystacial pad of the rat as revealed by the lectin Griffonia simplicifolia. J Comp Neurol 337(3):386–399

    Article  CAS  PubMed  Google Scholar 

  48. Hartmann MJ, Johnson NJ, Towal RB, Assad C (2003) Mechanical characteristics of rat vibrissae: resonant frequencies and damping in isolated whiskers and in the awake behaving animal. J Neurosci 23(16):6510–6519

    CAS  PubMed  Google Scholar 

  49. Hill DN, Bermejo R, Zeigler HP, Kleinfeld D (2008) Biomechanics of the vibrissa motor plant in rat: rhythmic whisking consists of triphasic neuromuscular activity. J Neurosci 28(13):3438–3455

    Article  CAS  PubMed  Google Scholar 

  50. Haidarliu S, Simony E, Golomb D, Ahissar E (2011) Collagenous skeleton of the rat mystacial pad. Anat Rec 294(5):764–773

    Article  Google Scholar 

  51. Simony E, Bagdasarian K, Herfst L, Brecht M, Ahissar E, Golomb D (2010) Temporal and spatial characteristics of vibrissa responses to motor commands. J Neurosci 30(26):8935–8952

    Article  CAS  PubMed  Google Scholar 

  52. Clarke WB, Bowsher D (1962) Terminal distribution of primary afferent trigeminal fibers in the rat. Exp Neurol 6:372–383

    Article  CAS  PubMed  Google Scholar 

  53. Zucker E, Welker WI (1969) Coding of somatic sensory input by vibrissae neurons in the rat’s trigeminal ganglion. Brain Res 12(1):138–156

    Article  CAS  PubMed  Google Scholar 

  54. Mitchinson B, Arabzadeh E, Diamond ME, Prescott TJ (2008) Spike-timing in primary sensory neurons: a model of somatosensory transduction in the rat. Biol Cybern 98(3):185–194

    Article  PubMed  Google Scholar 

  55. Lottem E, Azouz R (2011) A unifying framework underlying mechanotransduction in the somatosensory system. J Neurosci 31(23):8520–8532

    Article  CAS  PubMed  Google Scholar 

  56. Gibson JM, Welker WI (1983) Quantitative studies of stimulus coding in first-order vibrissa afferents of rats. 1. Receptive field properties and threshold distributions. Somatosens Res 1(1):51–67

    Article  CAS  PubMed  Google Scholar 

  57. Gibson JM, Welker WI (1983) Quantitative studies of stimulus coding in first-order vibrissa afferents of rats. 2. Adaptation and coding of stimulus parameters. Somatosens Res 1(2):95–117

    Article  CAS  PubMed  Google Scholar 

  58. Lichtenstein SH, Carvell GE, Simons DJ (1990) Responses of rat trigeminal ganglion neurons to movements of vibrissae in different directions. Somatosens Mot Res 7(1):47–65

    Article  CAS  PubMed  Google Scholar 

  59. Shoykhet M, Doherty D, Simons DJ (2000) Coding of deflection velocity and amplitude by whisker primary afferent neurons: implications for higher level processing. Somatosens Mot Res 17(2):171–180

    Article  CAS  PubMed  Google Scholar 

  60. Szwed M, Bagdasarian K, Ahissar E (2003) Encoding of vibrissal active touch. Neuron 40(3):621–630

    Article  CAS  PubMed  Google Scholar 

  61. Jones LM, Depireux DA, Simons DJ, Keller A (2004) Robust temporal coding in the trigeminal system. Science 304(5679):1986–1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Szwed M, Bagdasarian K, Blumenfeld B, Barak O, Derdikman D, Ahissar E (2006) Responses of trigeminal ganglion neurons to the radial distance of contact during active vibrissal touch. J Neurophysiol 95(2):791–802

    Article  PubMed  Google Scholar 

  63. Stuttgen MC, Kullmann S, Schwarz C (2008) Responses of rat trigeminal ganglion neurons to longitudinal whisker stimulation. J Neurophysiol 100(4):1879–1884

    Article  PubMed  Google Scholar 

  64. Bale MR, Petersen RS (2009) Transformation in the neural code for whisker deflection direction along the lemniscal pathway. J Neurophysiol 102(5):2771–2780

    Article  PubMed  PubMed Central  Google Scholar 

  65. Leiser SC, Moxon KA (2007) Responses of trigeminal ganglion neurons during natural whisking behaviors in the awake rat. Neuron 53(1):117–133

    Article  CAS  PubMed  Google Scholar 

  66. Khatri V, Bermejo R, Brumberg JC, Keller A, Zeigler HP (2009) Whisking in air: encoding of kinematics by trigeminal ganglion neurons in awake rats. J Neurophysiol 101(4):1836–1846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bale MR, Davies K, Freeman OJ, Ince RAA, Petersen RS (2013) Low-dimensional sensory feature representation by trigeminal primary afferents. J Neurosci 33(29):12003–12012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sakurai K, Akiyama M, Cai B, Scott A, Han BX, Takatoh J et al (2013) The organization of submodality-specific touch afferent inputs in the vibrissa column. Cell Rep 5(1):87–98

    Article  CAS  PubMed  Google Scholar 

  69. Jones LM, Lee S, Trageser JC, Simons DJ, Keller A (2004) Precise temporal responses in whisker trigeminal neurons. J Neurophysiol 92(1):665–668

    Article  PubMed  PubMed Central  Google Scholar 

  70. Carr CE, Macleod KM (2010) Microseconds matter. PLoS Biol 8(6):e1000405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Arabzadeh E, Panzeri S, Diamond ME (2006) Deciphering the spike train of a sensory neuron: counts and temporal patterns in the rat whisker pathway. J Neurosci 26(36):9216–9226

    Article  CAS  PubMed  Google Scholar 

  72. von Heimendahl M, Itskov PM, Arabzadeh E, Diamond ME (2007) Neuronal activity in rat barrel cortex underlying texture discrimination. PLoS Biol 5(11):e305

    Article  CAS  Google Scholar 

  73. Prescott TJ, Diamond ME, Wing AM (2011) Active touch sensing. Philos Trans R Soc Lond B Biol Sci 366(1581):2989–2995

    Article  PubMed  PubMed Central  Google Scholar 

  74. Jenks RA, Vaziri A, Boloori AR, Stanley GB (2010) Self-motion and the shaping of sensory signals. J Neurophysiol 103(4):2195–2207

    Article  PubMed  PubMed Central  Google Scholar 

  75. Hutson KA, Masterton RB (1986) The sensory contribution of a single vibrissa’s cortical barrel. J Neurophysiol 56(4):1196–1223

    CAS  PubMed  Google Scholar 

  76. Carvell GE, Simons DJ (1990) Biometric analyses of vibrissal tactile discrimination in the rat. J Neurosci 10(8):2638–2648

    CAS  PubMed  Google Scholar 

  77. Knutsen PM, Pietr M, Ahissar E (2006) Haptic object localization in the vibrissal system: behavior and performance. J Neurosci 26(33):8451–8464

    Article  CAS  PubMed  Google Scholar 

  78. O’Connor DH, Clack NG, Huber D, Komiyama T, Myers EW, Svoboda K (2010) Vibrissa-based object localization in head-fixed mice. J Neurosci 30(5):1947–1967

    Article  CAS  Google Scholar 

  79. Yu C, Horev G, Rubin N, Derdikman D, Haidarliu S, Ahissar E (2015) Coding of object location in the vibrissal thalamocortical system. Cereb Cortex 25(3):563–577

    Google Scholar 

  80. Stuttgen MC, Ruter J, Schwarz C (2006) Two psychophysical channels of whisker deflection in rats align with two neuronal classes of primary afferents. J Neurosci 26(30):7933–7941

    Article  PubMed  CAS  Google Scholar 

  81. Stuttgen MC, Schwarz C (2008) Psychophysical and neurometric detection performance under stimulus uncertainty. Nat Neurosci 11(9):1091–1099

    Article  PubMed  CAS  Google Scholar 

  82. Adibi M, Arabzadeh E (2011) A comparison of neuronal and behavioral detection and discrimination performances in rat whisker system. J Neurophysiol 105(1):356–365

    Article  PubMed  Google Scholar 

  83. Adibi M, Diamond ME, Arabzadeh E (2012) Behavioral study of whisker-mediated vibration sensation in rats. Proc Natl Acad Sci U S A 109(3):971–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mayrhofer JM, Skreb V, von der Behrens W, Musall S, Weber B, Haiss F (2013) Novel two-alternative forced choice paradigm for bilateral vibrotactile whisker frequency discrimination in head-fixed mice and rats. J Neurophysiol 109(1):273–284

    Article  PubMed  Google Scholar 

  85. Miyashita T, Feldman DE (2013) Behavioral detection of passive whisker stimuli requires somatosensory cortex. Cereb Cortex 23(7):1655–1662

    Article  PubMed  PubMed Central  Google Scholar 

  86. Fassihi A, Akrami A, Esmaeili V, Diamond ME (2014) Tactile perception and working memory in rats and humans. Proc Natl Acad Sci U S A 111(6):2331–2336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Krupa DJ, Matell MS, Brisben AJ, Oliveira LM, Nicolelis MA (2001) Behavioral properties of the trigeminal somatosensory system in rats performing whisker-dependent tactile discriminations. J Neurosci 21(15):5752–5763

    CAS  PubMed  Google Scholar 

  88. de Boer E, Kuyper P (1968) Triggered correlation. IEEE Trans Biomed Eng 15(3):169–179

    Article  PubMed  Google Scholar 

  89. Sharpee TO (2013) Computational identification of receptive fields. Annu Rev Neurosci 36:103–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Maravall M, Alenda A, Bale MR, Petersen RS (2013) Transformation of Adaptation and Gain Rescaling along the Whisker Sensory Pathway. PLoS One 8(12):e82418

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Theis L, Chagas AM, Arnstein D, Schwarz C, Bethge M (2013) Beyond GLMs: A Generative Mixture Modeling Approach to Neural System Identification. PLoS Comput Biol 9(11):e1003356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Chagas AM, Theis L, Sengupta B, Stuttgen MC, Bethge M, Schwarz C (2013) Functional analysis of ultra high information rates conveyed by rat vibrissal primary afferents. Front Neural Circuits 7:190

    Article  PubMed  PubMed Central  Google Scholar 

  93. Petersen RS, Brambilla M, Bale MR, Alenda A, Panzeri S, Montemurro MA et al (2008) Diverse and temporally precise kinetic feature selectivity in the VPm thalamic nucleus. Neuron 60(5):890–903

    Article  CAS  PubMed  Google Scholar 

  94. Maravall M, Petersen RS, Fairhall AL, Arabzadeh E, Diamond ME (2007) Shifts in coding properties and maintenance of information transmission during adaptation in barrel cortex. PLoS Biol 5(2):e19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Estebanez L, Boustani S E, Destexhe A, Shulz DE (2012) Correlated input reveals coexisting coding schemes in a sensory cortex. Nat Neurosci 15(12):1691–1699

    Article  CAS  PubMed  Google Scholar 

  96. Petersen RS, Panzeri S, Maravall M (2009) Neural coding and contextual influences in the whisker system. Biol Cybern 100(6):427–446

    Article  PubMed  Google Scholar 

  97. Jacob V, Cam J L, Ego-Stengel V, Shulz DE (2008) Emergent properties of tactile scenes selectively activate barrel cortex neurons. Neuron 60(6):1112–1125

    Article  CAS  PubMed  Google Scholar 

  98. Ego-Stengel V, Cam J L, Shulz DE (2012) Coding of apparent motion in the thalamic nucleus of the rat vibrissal somatosensory system. J Neurosci 32(10):3339–3351

    Article  CAS  PubMed  Google Scholar 

  99. Hirata A, Castro-Alamancos MA (2008) Cortical transformation of wide-field (multiwhisker) sensory responses. J Neurophysiol 100(1):358–370

    Article  PubMed  PubMed Central  Google Scholar 

  100. Crochet S, Petersen CC (2006) Correlating whisker behavior with membrane potential in barrel cortex of awake mice. Nat Neurosci 9(5):608–610

    Article  CAS  PubMed  Google Scholar 

  101. Curtis JC, Kleinfeld D (2009) Phase-to-rate transformations encode touch in cortical neurons of a scanning sensorimotor system. Nat Neurosci 12(4):492–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. O’Connor DH, Peron SP, Huber D, Svoboda K (2010) Neural activity in barrel cortex underlying vibrissa-based object localization in mice. Neuron 67(6):1048–1061

    Article  CAS  Google Scholar 

  103. Chen JL, Carta S, Soldado-Magraner J, Schneider BL, Helmchen F (2013) Behaviour-dependent recruitment of long-range projection neurons in somatosensory cortex. Nature 499(7458):336–340

    Article  CAS  PubMed  Google Scholar 

  104. de Kock CP, Bruno RM, Spors H, Sakmann B (2007) Layer- and cell-type-specific suprathreshold stimulus representation in rat primary somatosensory cortex. J Physiol 581(Pt 1):139–154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. de Kock CP, Sakmann B (2009) Spiking in primary somatosensory cortex during natural whisking in awake head-restrained rats is cell-type specific. Proc Natl Acad Sci U S A 106(38):16446–16450

    Article  PubMed  PubMed Central  Google Scholar 

  106. Barth AL, Poulet JF (2012) Experimental evidence for sparse firing in the neocortex. Trends Neurosci 35(6):345–355

    Article  CAS  PubMed  Google Scholar 

  107. Wolfe J, Houweling AR, Brecht M (2010) Sparse and powerful cortical spikes. Curr Opin Neurobiol 20(3):306–312

    Article  CAS  PubMed  Google Scholar 

  108. Ganguli S, Sompolinsky H (2012) Compressed sensing, sparsity, and dimensionality in neuronal information processing and data analysis. Annu Rev Neurosci 35:485–508

    Article  CAS  PubMed  Google Scholar 

  109. Harris KD, Mrsic-Flogel TD (2013) Cortical connectivity and sensory coding. Nature 503(7474):51–58

    Article  CAS  PubMed  Google Scholar 

  110. Quiroga RQ (2012) Concept cells: the building blocks of declarative memory functions. Nat Rev Neurosci 13(8):587–597

    CAS  PubMed  Google Scholar 

  111. Moore CI, Nelson SB (1998) Spatio-temporal subthreshold receptive fields in the vibrissa representation of rat primary somatosensory cortex. J Neurophysiol 80(6):2882–2892

    CAS  PubMed  Google Scholar 

  112. Zhu JJ, Connors BW (1999) Intrinsic firing patterns and whisker-evoked synaptic responses of neurons in the rat barrel cortex. J Neurophysiol 81(3):1171–1183

    CAS  PubMed  Google Scholar 

  113. Brecht M, Sakmann B (2002) Whisker maps of neuronal subclasses of the rat ventral posterior medial thalamus, identified by whole-cell voltage recording and morphological reconstruction. J Physiol 538(Pt 2):495–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Brecht M, Sakmann B (2002) Dynamic representation of whisker deflection by synaptic potentials in spiny stellate and pyramidal cells in the barrels and septa of layer 4 rat somatosensory cortex. J Physiol 543(Pt 1):49–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Brecht M, Roth A, Sakmann B (2003) Dynamic receptive fields of reconstructed pyramidal cells in layers 3 and 2 of rat somatosensory barrel cortex. J Physiol 553(Pt 1):243–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yassin L, Benedetti BL, Jouhanneau JS, Wen JA, Poulet JF, Barth AL (2010) An embedded subnetwork of highly active neurons in the neocortex. Neuron 68(6):1043–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Petersen CC, Crochet S (2013) Synaptic computation and sensory processing in neocortical layer 2/3. Neuron 78(1):28–48

    Article  CAS  PubMed  Google Scholar 

  118. Safaai H, von Heimendahl M, Sorando JM, Diamond ME, Maravall M (2013) Coordinated population activity underlying texture discrimination in rat barrel cortex. J Neurosci 33(13):5843–5855

    Article  CAS  PubMed  Google Scholar 

  119. Yamashita T, Pala A, Pedrido L, Kremer Y, Welker E, Petersen CC (2013) Membrane potential dynamics of neocortical projection neurons driving target-specific signals. Neuron 80(6):1477–1490

    Article  CAS  PubMed  Google Scholar 

  120. Andermann ML, Moore CI (2006) A somatotopic map of vibrissa motion direction within a barrel column. Nat Neurosci 9(4):543–551

    Article  CAS  PubMed  Google Scholar 

  121. Kerr JN, de Kock CP, Greenberg DS, Bruno RM, Sakmann B, Helmchen F (2007) Spatial organization of neuronal population responses in layer 2/3 of rat barrel cortex. J Neurosci 27(48):13316–13328

    Article  CAS  PubMed  Google Scholar 

  122. Sato TR, Gray NW, Mainen ZF, Svoboda K (2007) The functional microarchitecture of the mouse barrel cortex. PLoS Biol 5(7):e189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Crochet S, Poulet JF, Kremer Y, Petersen CC (2011) Synaptic mechanisms underlying sparse coding of active touch. Neuron 69(6):1160–1175

    Article  CAS  PubMed  Google Scholar 

  124. Margolis DJ, Lutcke H, Schulz K, Haiss F, Weber B, Kugler S et al (2012) Reorganization of cortical population activity imaged throughout long-term sensory deprivation. Nat Neurosci 15(11):1539–1546

    Article  CAS  PubMed  Google Scholar 

  125. Elstrott J, Clancy KB, Jafri H, Akimenko I, Feldman DE (2014) Cellular mechanisms for response heterogeneity among L2/3 pyramidal cells in whisker somatosensory cortex. J Neurophysiol 112(2):233–248

    Article  PubMed  PubMed Central  Google Scholar 

  126. Montemurro MA, Panzeri S, Maravall M, Alenda A, Bale MR, Brambilla M et al (2007) Role of precise spike timing in coding of dynamic vibrissa stimuli in somatosensory thalamus. J Neurophysiol 98(4):1871–1882

    Article  PubMed  Google Scholar 

  127. Fee MS, Mitra PP, Kleinfeld D (1997) Central versus peripheral determinants of patterned spike activity in rat vibrissa cortex during whisking. J Neurophysiol 78(2):1144–1149

    CAS  PubMed  Google Scholar 

  128. Hill DN, Curtis JC, Moore JD, Kleinfeld D (2011) Primary motor cortex reports efferent control of vibrissa motion on multiple timescales. Neuron 72(2):344–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Gentet LJ, Avermann M, Matyas F, Staiger JF, Petersen CC (2010) Membrane potential dynamics of GABAergic neurons in the barrel cortex of behaving mice. Neuron 65(3):422–435

    Article  CAS  PubMed  Google Scholar 

  130. Knutsen PM, Ahissar E (2009) Orthogonal coding of object location. Trends Neurosci 32(2):101–109

    Article  CAS  PubMed  Google Scholar 

  131. Panzeri S, Diamond ME (2010) Information carried by population spike times in the whisker sensory cortex can be decoded without knowledge of stimulus time. Front Synaptic Neurosci 2:17

    PubMed  PubMed Central  Google Scholar 

  132. Panzeri S, Ince RA, Diamond ME, Kayser C (2014) Reading spike timing without a clock: intrinsic decoding of spike trains. Phil Trans R Soc B 369(1637):20120467.

    Google Scholar 

  133. Panzeri S, Petersen RS, Schultz SR, Lebedev M, Diamond ME (2001) The role of spike timing in the coding of stimulus location in rat somatosensory cortex. Neuron 29(3):769–777

    Article  CAS  PubMed  Google Scholar 

  134. Petersen RS, Panzeri S, Diamond ME (2001) Population coding of stimulus location in rat somatosensory cortex. Neuron 32(3):503–514

    Article  CAS  PubMed  Google Scholar 

  135. Johansson RS, Birznieks I (2004) First spikes in ensembles of human tactile afferents code complex spatial fingertip events. Nat Neurosci 7(2):170–177

    Article  CAS  PubMed  Google Scholar 

  136. Foffani G, Tutunculer B, Moxon KA (2004) Role of spike timing in the forelimb somatosensory cortex of the rat. J Neurosci 24(33):7266–7271

    Article  CAS  PubMed  Google Scholar 

  137. Storchi R, Bale MR, Biella GE, Petersen RS (2012) Comparison of latency and rate coding for the direction of whisker deflection in the subcortical somatosensory pathway. J Neurophysiol 108(7):1810–1821

    Article  PubMed  PubMed Central  Google Scholar 

  138. Temereanca S, Brown EN, Simons DJ (2008) Rapid changes in thalamic firing synchrony during repetitive whisker stimulation. J Neurosci 28(44):11153–11164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Khatri V, Bruno RM, Simons DJ (2009) Stimulus-specific and stimulus-nonspecific firing synchrony and its modulation by sensory adaptation in the whisker-to-barrel pathway. J Neurophysiol 101(5):2328–2338

    Article  PubMed  PubMed Central  Google Scholar 

  140. Stanley GB, Jin J, Wang Y, Desbordes G, Wang Q, Black MJ et al (2012) Visual orientation and directional selectivity through thalamic synchrony. J Neurosci 32(26):9073–9088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Brette R (2012) Computing with neural synchrony. PLoS Comput Biol 8(6):e1002561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Rossant C, Leijon S, Magnusson AK, Brette R (2011) Sensitivity of noisy neurons to coincident inputs. J Neurosci 31(47):17193–17206

    Article  CAS  PubMed  Google Scholar 

  143. Bruno RM, Sakmann B (2006) Cortex is driven by weak but synchronously active thalamocortical synapses. Science 312(5780):1622–1627

    Article  CAS  PubMed  Google Scholar 

  144. Song S, Sjostrom PJ, Reigl M, Nelson S, Chklovskii DB (2005) Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol 3(3):e68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Lefort S, Tomm C, Floyd Sarria JC, Petersen CC (2009) The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron 61(2):301–316

    Article  CAS  PubMed  Google Scholar 

  146. Diaz-Quesada M, Martini FJ, Ferrati G, Bureau I, Maravall M (2014) Diverse thalamocortical short-term plasticity elicited by ongoing stimulation. J Neurosci 34(2):515–526

    Article  CAS  PubMed  Google Scholar 

  147. O’Connor DH, Hires SA, Guo ZV, Li N, Yu J, Sun QQ et al (2013) Neural coding during active somatosensation revealed using illusory touch. Nat Neurosci 16(7):958–965

    Article  CAS  Google Scholar 

  148. Diamond ME, von Heimendahl M, Arabzadeh E (2008) Whisker-mediated texture discrimination. PLoS Biol 6(8):e220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Maravall M (2013) Adaptation and sensory coding. In: Quian Quiroga R, Panzeri S (eds) Principles of neural coding. Taylor & Francis/CRC Press, Boca Raton, pp 357–378

    Chapter  Google Scholar 

  150. Katz Y, Heiss JE, Lampl I (2006) Cross-whisker adaptation of neurons in the rat barrel cortex. J Neurosci 26(51):13363–13372

    Article  CAS  PubMed  Google Scholar 

  151. Khatri V, Simons DJ (2007) Angularly nonspecific response suppression in rat barrel cortex. Cereb Cortex 17(3):599–609

    Article  PubMed  Google Scholar 

  152. Wang Q, Webber RM, Stanley GB (2010) Thalamic synchrony and the adaptive gating of information flow to cortex. Nat Neurosci 13(12):1534–1541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ollerenshaw DR, Zheng HJ, Millard DC, Wang Q, Stanley GB (2014) The adaptive trade-off between detection and discrimination in cortical representations and behavior. Neuron 81(5):1152–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Adibi M, McDonald JS, Clifford CW, Arabzadeh E (2013) Adaptation improves neural coding efficiency despite increasing correlations in variability. J Neurosci 33(5):2108–2120

    Article  CAS  PubMed  Google Scholar 

  155. Adibi M, Clifford CW, Arabzadeh E (2013) Informational basis of sensory adaptation: entropy and single-spike efficiency in rat barrel cortex. J Neurosci 33(37):14921–14926

    Article  CAS  PubMed  Google Scholar 

  156. Lak A, Arabzadeh E, Diamond ME (2008) Enhanced response of neurons in rat somatosensory cortex to stimuli containing temporal noise. Cereb Cortex 18(5):1085–1093

    Article  PubMed  Google Scholar 

  157. Lak A, Arabzadeh E, Harris JA, Diamond ME (2010) Correlated physiological and perceptual effects of noise in a tactile stimulus. Proc Natl Acad Sci U S A 107(17):7981–7986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Mease RA, Krieger P, Groh A (2014) Cortical control of adaptation and sensory relay mode in the thalamus. Proc Natl Acad Sci U S A 111(18):6798–6803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Garcia-Lazaro JA, Ho SS, Nair A, Schnupp JW (2007) Shifting and scaling adaptation to dynamic stimuli in somatosensory cortex. Eur J Neurosci 26(8):2359–2368

    Article  CAS  PubMed  Google Scholar 

  160. Lundstrom BN, Fairhall AL, Maravall M (2010) Multiple timescale encoding of slowly varying whisker stimulus envelope in cortical and thalamic neurons in vivo. J Neurosci 30(14):5071–5077

    Article  CAS  PubMed  Google Scholar 

  161. Chung S, Li X, Nelson SB (2002) Short-term depression at thalamocortical synapses contributes to rapid adaptation of cortical sensory responses in vivo. Neuron 34(3):437–446

    Article  CAS  PubMed  Google Scholar 

  162. Ganmor E, Katz Y, Lampl I (2010) Intensity-dependent adaptation of cortical and thalamic neurons is controlled by brainstem circuits of the sensory pathway. Neuron 66(2):273–286

    Article  CAS  PubMed  Google Scholar 

  163. Diaz-Quesada M, Maravall M (2008) Intrinsic mechanisms for adaptive gain rescaling in barrel cortex. J Neurosci 28(3):696–710

    Article  CAS  PubMed  Google Scholar 

  164. Mease RA, Famulare M, Gjorgjieva J, Moody WJ, Fairhall AL (2013) Emergence of adaptive computation by single neurons in the developing cortex. J Neurosci 33(30):12154–12170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Abbott LF, Dayan P (1999) The effect of correlated variability on the accuracy of a population code. Neural Comput 11(1):91–101

    Article  CAS  PubMed  Google Scholar 

  166. Sompolinsky H, Yoon H, Kang K, Shamir M (2001) Population coding in neuronal systems with correlated noise. Phys Rev E Stat Nonlin Soft Matter Phys 64(5 Pt 1):051904

    Article  CAS  PubMed  Google Scholar 

  167. Shamir M, Sompolinsky H (2006) Implications of neuronal diversity on population coding. Neural Comput 18(8):1951–1986

    Article  PubMed  Google Scholar 

  168. Chelaru MI, Dragoi V (2008) Efficient coding in heterogeneous neuronal populations. Proc Natl Acad Sci U S A 105(42):16344–16349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Hung CP, Kreiman G, Poggio T, DiCarlo JJ (2005) Fast readout of object identity from macaque inferior temporal cortex. Science 310(5749):863–866

    Article  CAS  PubMed  Google Scholar 

  170. Meyers EM, Freedman DJ, Kreiman G, Miller EK, Poggio T (2008) Dynamic population coding of category information in inferior temporal and prefrontal cortex. J Neurophysiol 100(3):1407–1419

    Article  PubMed  PubMed Central  Google Scholar 

  171. Nikolic D, Hausler S, Singer W, Maass W (2009) Distributed fading memory for stimulus properties in the primary visual cortex. PLoS Biol 7(12):e1000260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Klampfl S, David SV, Yin P, Shamma SA, Maass W (2012) A quantitative analysis of information about past and present stimuli encoded by spikes of A1 neurons. J Neurophysiol 108(5):1366–1380

    Article  PubMed  PubMed Central  Google Scholar 

  173. Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304(5679):1926–1929

    Article  CAS  PubMed  Google Scholar 

  174. Harris KD, Thiele A (2011) Cortical state and attention. Nat Rev Neurosci 12(9):509–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Zohary E, Shadlen MN, Newsome WT (1994) Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370(6485):140–143

    Article  CAS  PubMed  Google Scholar 

  176. Amzica F, Steriade M (1995) Short- and long-range neuronal synchronization of the slow (< 1 Hz) cortical oscillation. J Neurophysiol 73(1):20–38

    CAS  PubMed  Google Scholar 

  177. Arieli A, Shoham D, Hildesheim R, Grinvald A (1995) Coherent spatiotemporal patterns of ongoing activity revealed by real-time optical imaging coupled with single-unit recording in the cat visual cortex. J Neurophysiol 73(5):2072–2093

    CAS  PubMed  Google Scholar 

  178. Arieli A, Sterkin A, Grinvald A, Aertsen A (1996) Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273(5283):1868–1871

    Article  CAS  PubMed  Google Scholar 

  179. Buracas GT, Zador AM, DeWeese MR, Albright TD (1998) Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex. Neuron 20(5):959–969

    Article  CAS  PubMed  Google Scholar 

  180. Azouz R, Gray CM (1999) Cellular mechanisms contributing to response variability of cortical neurons in vivo. J Neurosci 19(6):2209–2223

    CAS  PubMed  Google Scholar 

  181. Lampl I, Reichova I, Ferster D (1999) Synchronous membrane potential fluctuations in neurons of the cat visual cortex. Neuron 22(2):361–374

    Article  CAS  PubMed  Google Scholar 

  182. Tsodyks M, Kenet T, Grinvald A, Arieli A (1999) Linking spontaneous activity of single cortical neurons and the underlying functional architecture. Science 286(5446):1943–1946

    Article  CAS  PubMed  Google Scholar 

  183. Anderson J, Lampl I, Reichova I, Carandini M, Ferster D (2000) Stimulus dependence of two-state fluctuations of membrane potential in cat visual cortex. Nat Neurosci 3(6):617–621

    Article  CAS  PubMed  Google Scholar 

  184. Petersen CC, Hahn TT, Mehta M, Grinvald A, Sakmann B (2003) Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex. Proc Natl Acad Sci U S A 100(23):13638–13643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Deweese MR, Zador AM (2004) Shared and private variability in the auditory cortex. J Neurophysiol 92(3):1840–1855

    Article  PubMed  Google Scholar 

  186. Poulet JF, Petersen CC (2008) Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature 454(7206):881–885

    Article  CAS  PubMed  Google Scholar 

  187. Erchova IA, Lebedev MA, Diamond ME (2002) Somatosensory cortical neuronal population activity across states of anaesthesia. Eur J Neurosci 15(4):744–752

    Article  PubMed  Google Scholar 

  188. Castro-Alamancos MA (2004) Absence of rapid sensory adaptation in neocortex during information processing states. Neuron 41(3):455–464

    Article  CAS  PubMed  Google Scholar 

  189. Sachdev RN, Ebner FF, Wilson CJ (2004) Effect of subthreshold up and down states on the whisker-evoked response in somatosensory cortex. J Neurophysiol 92(6):3511–3521

    Article  PubMed  Google Scholar 

  190. Haslinger R, Ulbert I, Moore CI, Brown EN, Devor A (2006) Analysis of LFP phase predicts sensory response of barrel cortex. J Neurophysiol 96(3):1658–1663

    Article  CAS  PubMed  Google Scholar 

  191. Hasenstaub A, Sachdev RN, McCormick DA (2007) State changes rapidly modulate cortical neuronal responsiveness. J Neurosci 27(36):9607–9622

    Article  CAS  PubMed  Google Scholar 

  192. Reig R, Sanchez-Vives MV (2007) Synaptic transmission and plasticity in an active cortical network. PLoS ONE 2(7):e670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Constantinople CM, Bruno RM (2011) Effects and mechanisms of wakefulness on local cortical networks. Neuron 69(6):1061–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Katz Y, Okun M, Lampl I (2012) Trial-to-trial correlation between thalamic sensory response and global EEG activity. Eur J Neurosci 35(6):826–837

    Article  PubMed  Google Scholar 

  195. Alenda A, Molano-Mazon M, Panzeri S, Maravall M (2010) Sensory input drives multiple intracellular information streams in somatosensory cortex. J Neurosci 30(32):10872–10884

    Article  CAS  PubMed  Google Scholar 

  196. Poulet JF, Fernandez LM, Crochet S, Petersen CC (2012) Thalamic control of cortical states. Nat Neurosci 15(3):370–372

    Article  CAS  PubMed  Google Scholar 

  197. MacLean JN, Watson BO, Aaron GB, Yuste R (2005) Internal dynamics determine the cortical response to thalamic stimulation. Neuron 48(5):811–823

    Article  CAS  PubMed  Google Scholar 

  198. Guo ZV, Li N, Huber D, Ophir E, Gutnisky D, Ting JT et al (2014) Flow of cortical activity underlying a tactile decision in mice. Neuron 81(1):179–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Stuart Ingham for help with the artwork in Fig. 8.1 and to Marco Gigante for the artwork in Fig. 8.5c. We thank Michael Bale for comments on an earlier version. Funding was from the Spanish Ministry of Economy and Competitiveness grant BFU2011-23049 (co-funded by the European Fund for Regional Development); the Valencia Regional Government grant PROMETEO/2011/086; the Human Frontier Science Program grant Neuroscience of Knowledge (RG0015/2013); the European Research Council Advanced grant CONCEPT (294498); the European Union FET grant CORONET (269459); the Italian Ministry for Universities and Research grant HANDBOT.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miguel Maravall or Mathew E. Diamond .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Maravall, M., Diamond, M. (2015). Functional Principles of Whisker-Mediated Touch Perception. In: Krieger, P., Groh, A. (eds) Sensorimotor Integration in the Whisker System. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2975-7_8

Download citation

Publish with us

Policies and ethics