Skip to main content

Part of the book series: Fields Institute Monographs ((FIM,volume 34))

Abstract

We begin by introducing the concept of a Hodge structure and give some of its basic properties, including the Hodge and Lefschetz decompositions. We then define the period map, which relates families of Kähler manifolds to the families of Hodge structures defined on their cohomology, and discuss its properties. This will lead us to the more general definition of a variation of Hodge structure and the Gauss-Manin connection. We then review the basics about mixed Hodge structures with a view towards degenerations of Hodge structures; including the canonical extension of a vector bundle with connection, Schmid’s limiting mixed Hodge structure and Steenbrink’s work in the geometric setting. Finally, we give an outlook about Hodge theory in the Gross-Siebert program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A third characterization of Hodge structures is given in terms of certain representations of \(\mathrm{Res}_{\mathbb{C}/\mathbb{R}}\mathbb{C}^{{\ast}}\) (see, for example, [31]). More precisely, a rational Hodge structure of weight n on a \(\mathbb{Q}\)-vector space H can be identified with an algebraic representation \(\rho: \mathbb{C}^{{\ast}}\rightarrow GL(H_{\mathbb{R}})\), where \(H_{\mathbb{R}}:= H \otimes _{\mathbb{Q}}\mathbb{R}\), such that the restriction of ρ to \(\mathbb{R}^{{\ast}}\) is given by \(\rho (\lambda ) =\lambda ^{n}\). From this point of view, it is clearly completely natural to use constructions from multi-linear algebra to produce new Hodge structures.

  2. 2.

    Note that here we use the original notation by Steenbrink [30]; the two indices p, q are swapped in [25].

References

  1. Barth, W.P., Hulek, K., Peters, C.A.M., van de Ven, A.: Compact Complex Surfaces. Volume 4 of Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Fogle, A Series of Modern Surveys in Mathematics, 2nd edn. Springer, Berlin/New York (2004)

    Google Scholar 

  2. Carlson, J., Müller-Stach, S., Peters, C.A.M.: Period Mappings and Period Domains. Volume 85 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  3. Clemens, C.H.: Degeneration of Kähler manifolds. Duke Math. J. 44(2), 215–290 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  4. Deligne, P.: Théorie de Hodge II. Inst. Hautes Études Sci. Publ. Math. 40, 5–57 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  5. Deligne, P.: Comparaison avec la théorie transcendante. In: Groupes de Monodromie en Géométrie Algébrique. Volume 340 of Lecture Notes in Mathamatics, pp. 116–164. Springer, Berlin/Heidelberg (1973)

    Google Scholar 

  6. Deligne, P.: Le formalisme des cycles évanescents. In: Groupes de Monodromie en Géométrie Algébrique. Volume 340 of Lecture Notes in Mathamatics, pp. 82–115. Springer, Berlin/Heidelberg (1973)

    Google Scholar 

  7. Deligne, P.: Théorie de Hodge III. Inst. Hautes Études Sci. Publ. Math. 44, 5–77 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deligne, P.: Local behavior of Hodge structures at infinity. In: Mirror Symmetry, II. Volume 1 of AMS/IP Studies in Advanced Mathematics, pp. 683–699. American Mathematical Society, Providence (1997)

    Google Scholar 

  9. Griffiths, P.: Periods of integrals on algebraic manifolds. I. Construction and properties of the modular varieties. Am. J. Math. 90, 568–626 (1968)

    MATH  Google Scholar 

  10. Griffiths, P.: Periods of integrals on algebraic manifolds. II. Local study of the period mapping. Am. J. Math. 90, 805–865 (1968)

    MATH  Google Scholar 

  11. Griffiths, P.: On the periods of certain rational integrals. I, II. Ann. Math. (2) 90, 460–495, 496–541 (1969)

    Google Scholar 

  12. Griffiths, P.: Periods of integrals on algebraic manifolds. III. Some global differential-geometric properties of the period mapping. Inst. Hautes Études Sci. Publ. Math. 38, 125–180 (1970)

    Article  MATH  Google Scholar 

  13. Griffiths, P.: Periods of integrals on algebraic manifolds: summary of main results and discussion of open problems. Bull. Am. Math. Soc. 76, 228–296 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gross, M.: Mirror symmetry and the Strominger-Yau-Zaslow conjecture. In: Current Developments in Mathematics 2012, pp. 133–191. International Press, Somerville (2013)

    Google Scholar 

  15. Gross, M., Katzarkov, L., Ruddat, H.: Towards mirror symmetry for varieties of general type (February 2012, preprint). arXiv:1202.4042

    Google Scholar 

  16. Gross, M., Siebert, B.: Affine manifolds, log structures, and mirror symmetry. Turkish J. Math. 27(1), 33–60 (2003)

    MathSciNet  MATH  Google Scholar 

  17. Gross, M., Siebert, B.: Mirror symmetry via logarithmic degeneration data I. J. Differ. Geom. 72(2), 169–338 (2006)

    MathSciNet  MATH  Google Scholar 

  18. Gross, M., Siebert, B.: Mirror symmetry via logarithmic degeneration data II. J. Algebraic Geom. 19(4), 679–780 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gross, M., Siebert, B.: An invitation to toric degenerations. In: Geometry of Special Holonomy and Related Topics. Volume 16 of Surveys in Differential Geometry, pp. 43–78. International Press, Somerville (2011)

    Google Scholar 

  20. Kempf, G., Knudsen, F., Mumford, D., Saint-Donat, B.: Toroidal Embeddings I. Volume 339 of Lecture Notes in Mathematics. Springer, Berlin/Heidelberg (1973)

    Google Scholar 

  21. Kulikov, V.: Mixed Hodge Structures and Singularities. Volume 132 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge/New York (1998)

    Google Scholar 

  22. Malgrange, B.: Intégrales asymptotiques et monodromie. Ann. Sci. École Norm. Sup. (4) 7, 405–430 (1974)

    Google Scholar 

  23. Morrison, D.: The Clemens-Schmid exact sequence and applications. In: Griffiths, P. (ed.) Topics in Transcendental Algebraic Geometry (Princeton, 1981/1982). Volume 106 of Annals of mathematics studies, pp. 101–119. Princeton University Press, Princeton (1984)

    Google Scholar 

  24. Morrison, D.: Mirror symmetry and rational curves on quintic threefolds: a guide for mathematicians. J. Am. Math. Soc. 6(1), 223–247 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Peters, C.A.M., Steenbrink, J.H.M.: Mixed Hodge Structures. Volume 52 of Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Fogle, A Series of Modern Surveys in Mathematics. Springer, Berlin (2008)

    Google Scholar 

  26. Ruddat, H., Siebert, B.: Canonical coordinates in toric degenerations. (September 2014, preprint). arXiv:1409.4750

    Google Scholar 

  27. Ruddat, H.: Log Hodge groups on a toric Calabi-Yau degeneration. In: Mirror Symmetry and Tropical Geometry. Volume 527 of Contemporary Mathematics, pp. 113–164. AMS, Providence (2010)

    Google Scholar 

  28. Ruddat, H., Sibilla, N., Treumann, D., Zaslow, E.: Skeleta of affine hypersurfaces. Geom. Topol. 18(3), 1343–1395 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schmid, W.: Variation of Hodge structure: the singularities of the period mapping. Invent. Math. 22, 211–319 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  30. Steenbrink, J.H.M.: Limits of Hodge structures. Invent. Math. 31(3), 229–257 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  31. van Geemen, B.: Kuga-Satake varieties and the Hodge conjecture. In: Gordon, B.B., Lewis, J.D., Müller-Stach, S., Saito, S., Yui, N. (eds.) The Arithmetic and Geometry of Algebraic Cycles (Proceedings of the NATO Advanced Study Institute held as part of the 1998 CRM Summer School at Banff, AB, 7–19 June 1998). Volume 548 of NATO Science Series C: Mathematical and Physical Sciences, pp. 51–82. Kluwer, Dordrecht (2000)

    Google Scholar 

  32. Varčenko, A.N.: Asymptotic behaviour of holomorphic forms determines a mixed Hodge structure. Dokl. Akad. Nauk SSSR 255(5), 1035–1038 (1980)

    MathSciNet  Google Scholar 

  33. Voisin, C.: Hodge Theory and Complex Algebraic Geometry. I. Volume 76 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2007)

    Google Scholar 

Download references

Acknowledgements

A part of these notes was written while the authors were in residence at the Fields Institute Thematic Program on Calabi-Yau Varieties: Arithmetic, Geometry and Physics; we would like to thank the Fields Institute for their support and hospitality. A. Thompson was supported by a Fields-Ontario-PIMS postdoctoral fellowship with funding provided by NSERC, the Ontario Ministry of Training, Colleges and Universities, and an Alberta Advanced Education and Technology Grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Helge Ruddat or Alan Thompson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Filippini, S.A., Ruddat, H., Thompson, A. (2015). An Introduction to Hodge Structures. In: Laza, R., Schütt, M., Yui, N. (eds) Calabi-Yau Varieties: Arithmetic, Geometry and Physics. Fields Institute Monographs, vol 34. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2830-9_4

Download citation

Publish with us

Policies and ethics