Skip to main content

Switchgrass and Giant Miscanthus Agronomy

  • Chapter
  • First Online:

Abstract

Sustainable biomass feedstock production is the necessary first step for cellulosic biofuel and bioenergy production. Two species, switchgrass (Panicum virgatum L.) and giant miscanthus (Miscanthus × giganteus), are of interest as dedicated energy crops as both have great biomass production potential. Switchgrass, a perennial warm-season grass native to most of North America, has been evaluated for biomass feedstock production in many parts of world and shows promise as a productive feedstock with many environmental benefits. Giant miscanthus, also a perennial warm-season grass, originated in Japan and has recently been evaluated as a feedstock because of substantial biomass production. The management of these two crops is very different; switchgrass is propagated using seeds and giant miscanthus is a sterile hybrid that requires asexual propagation using either rhizomes or plugs. This chapter provides detailed practical information on establishment and post-establishment management for these two grasses as dedicated energy crops.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. U.S. Department of Energy (2011) U.S. billion-ton update: biomass supply for a bioenergy and bioproducts industry. In: Perlack RD, Stokes BJ (eds) ORNL/TM-2011/224. Oak Ridge National Laboratory, Oak Ridge, TN, p 227

    Google Scholar 

  2. Long SP (1994) The application of physiological and molecular understanding of the effects of the environment on photosynthesis in the selection of novel “fuel” crops; with particular reference to C4 perennials. In: Struick PC, Vredenberg W, Renkema JA, Parlevet JE (eds) Plant production on the threshold of a new century. Proceedings of the International Conference at the Occasion of the 75th Anniversary of Wageningen Agricultural University, Wageningen, The Netherlands, 28 June-1 July, 1993, p 231–244

    Google Scholar 

  3. Heaton EA, Clifton Brown J, Voigt T, Jones MB, Long SP (2004) Miscanthus for renewable energy generation: European Union Experience and projections for Illinois. Mitig Adapt Strateg Glob Chang 9:433–451

    Article  Google Scholar 

  4. Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L (2009) Beneficial biofuels—the food, energy, and environment Trilemma. Science 325(5938):270–271

    Article  CAS  PubMed  Google Scholar 

  5. Simmons BA, Loque D, Blanch HW (2008) Next-generation biomass feedstocks for biofuels production. Gen Biol 9:242

    Article  Google Scholar 

  6. Gopalakrishnan G, Negri MC, Wang M, Wu M, Snyder SW, Lafreniere L et al (2009) Biofuels, land and water: a systems approach to sustainability. Environ Sci Technol 43(15):6094–6100

    Article  CAS  PubMed  Google Scholar 

  7. Sun Grant Initiative/US Department of Energy (February 2011) Regional Biomass Feedstock partnership Status Report. http://www.sungrant.org/NR/rdonlyres/5AE4D8AB-FD48-4FB1-AD9C-E71B53BE41D1/0/FeedstockStatusReport2011.pdf

  8. Porter CL Jr (1966) An analysis of variation between upland and lowland switchgrass Panicum virgatum L. in central Oklahoma. Ecology 47:980–992

    Article  Google Scholar 

  9. Hitchcock AS (1971) In: Chase A (ed) Manual of the Grasses of the United States, 2nd edn. No. 200. United States Department of Agriculture, Washington, DC

    Google Scholar 

  10. Stubbendieck J, Hatch SL, Bryan NM (2003) North American wildland plants. A field guide, 2nd edn. University of Nebraska Press, Lincoln, p 153

    Google Scholar 

  11. Casler MD, Stendal CA, Ludimila K, Kenneth PV (2007) Genetic diversity, plant adaptation regions, and gene pools for switchgrass. Crop Sci 47:2261–2273

    Article  CAS  Google Scholar 

  12. Casler MD, Vogel KP, Taliaferro CM, Ehlke NJ, Berdahl JD, Brummer EC et al (2007) Latitudinal and longitudinal adaptation of switchgrass populations. Crop Science 47:2249–2260

    Article  Google Scholar 

  13. Beaty ER, Engel JL, Powell JD (1978) Tiller development and growth in switchgrass. J Range Manag 31:361–365

    Article  Google Scholar 

  14. Parrish DJ, Fike JH (2005) The biology and agronomy of switchgrass for biofuels. Crit Rev Plant Sci 24:423–459

    Article  Google Scholar 

  15. Vogel KP (2004) Switchgrass. In: Moser LE, Burson BL, Sollenberger LE (eds) Warm-season (C4) grasses. Agronomy Monograph. 45. ASA, CSSA, and SSSA, Madison, WI, pp 561–588

    Google Scholar 

  16. McLaughlin SB, Bouton J, Bransby D, Conger R, Ocumpaugh W, Parrish D et al (1999) Developing switchgrass as a bioenergy crop. In: Janick J (ed) Perspectives on new crops and new uses. Proceedings of the 4th National New Crops Symposium, Phoenix, AZ, 8–11 Nov. 1998. ASHS Press, Alexandria, VA, p 282–299

    Google Scholar 

  17. McLaughlin SB, Ugarte D, Garten CT, Lynd LR, Sanderson MA, Tolbert VR et al (2002) High-value renewable energy from prairie grasses. Environ Sci Technol 36:2122–2129

    Article  CAS  PubMed  Google Scholar 

  18. McLaughlin SB, Walsh ME (1998) Evaluating environmental consequences of producing herbaceous crops for bioenergy. Biomass Bioenergy 14:317–324

    Article  CAS  Google Scholar 

  19. Sanderson MA, Adler P, Skinner RH, Dell C, Curran B (2004) Establishment, production, and management needs of switchgrass for biomass feedstock in the northeastern U.S.A. In: Randall J, Burns JC (eds) Proceedings of the third eastern native grass symposium. Omnipress, Chapel Hill, NC, pp 92–97

    Google Scholar 

  20. Vogel KP, Sarath G, Saathoff AJ, Mitchell RB (2011) Switchgrass. In: Halford NG, Karp A (eds) Energy crops. Royal Society of Chemistry, London

    Google Scholar 

  21. Casler MD, Vogel KP, Taliaferro CM, Wynia RL (2004) Latitudinal adaptation of switchgrass populations. Crop Sci 44:293–303

    Google Scholar 

  22. Sanderson MA, Schmer MR, Owens V, Keyser P, Elbersen W (2012) Crop management of switchgrass. Agronomy & horticulture—faculty publications. Paper 551.http://digitalcommons.unl.edu/agronomyfacpub/551

  23. Elbersen HW, Christian DG, El-Bassem N, Bacher W, Sauerbeck G, Alexopoulou E et al (2001) Switchgrass variety choices in Europe. Aspects Appl Biol 65:21–28

    Google Scholar 

  24. Van Esbroeck GA, Hussey MA, Sanderson MA (2003) Variation between Alamo and Cave-in-Rock switchgrass in response to photoperiod extension. Crop Sci 43:639–643

    Google Scholar 

  25. Moser LE, Vogel KP (1995) Switchgrass, big bluestem and Indiangrass. In: Barners RF (ed) Forages: an introduction to grassland agriculture, vol 1, 5th edn. Iowa State University Press, Ames, IA, pp 409–420

    Google Scholar 

  26. Casler MD (2012) Switchgrass breeding, genetics, and genomics. In: Monti A (ed) Switchgrass, green energy and technology. Springer, London, pp 29–53

    Google Scholar 

  27. Maughan MW (2011) Evaluation of Switchgrass, M. × giganteus, and Sorghum as biomass crops: Effects of environment and field management practices. Dissertation, University of Illinois Urbana-Champaign

    Google Scholar 

  28. USDA Natural Resource Conservation Service (2009) Understanding seeding rates, recommended planting rates, and pure live seed (PLS). USDA NRCS Plant Materials Technical Note No. 11. Alexandria, VA

    Google Scholar 

  29. Mitchell RB, Vogel KP (2012) Germination and emergence tests for predicting switchgrass field establishment. Agron J 104:458–465

    Article  Google Scholar 

  30. Bryant JA (1985) Seed physiology. Edward Arnold Publishers, London

    Google Scholar 

  31. Vogel KP (2002) The challenge: high quality seed of native plants to ensure successful establishment. Seed Technol 24:9–15

    Google Scholar 

  32. Newman PR, Moser LE (1988) Grass seedling emergence, morphology, and establishment as affected by planting depth. Agron J 80:383–387

    Article  Google Scholar 

  33. Mitchell RB, Vogel KP, Sarath G (2008) Managing and enhancing switchgrass as a bioenergy feedstock. Biofuel Bioprod Biores 2:530–539

    Article  Google Scholar 

  34. Schmer MR, Vogel KP, Mitchell RB, Moser LE, Eskridge KM, Perrin RK et al (2006) Establishment stand thresholds for switchgrass grown as a bioenergy crop. Crop Sci 46:157–161

    Article  Google Scholar 

  35. Panciera MT, Jung GA (1984) Switchgrass establishment by conservation tillage—planting date response of two varieties. J Soil Water Conserv 39:68–70

    Google Scholar 

  36. Vassey TL, George JR, Mullen RE (1985) Early-, mid-, and late-spring establishment of switchgrass at several seeding rates. Agron J 77:253–257

    Article  Google Scholar 

  37. Hsu FH, Nelson CJ (1985) Relationships between germination tests and field emergence of perennial warm-season forage grasses. In: Proceedings of the XV international grassland congress, Kyoto, Japan, August 24–31, p 380–381

    Google Scholar 

  38. Hsu FH, Nelson CJ, Matches AG (1985) Temperature effects on seedling development of perennial warm-season forage grasses. Crop Sci 25:249–255

    Article  Google Scholar 

  39. Hsu FH, Nelson CJ (1986) Planting date effects on seedling development of perennial warm-season forage grasses. I field emergency. Agron J 73:33–38

    Article  Google Scholar 

  40. Hsu FH, Nelson CJ (1986) Planting date effects on seedling development of perennial warm-season forage grasses. II seedling growth. Agron J 73:38–42

    Article  Google Scholar 

  41. Vogel KP (1987) Seeding rates for establishing big bluestem and switchgrass with pre-emergence atrazine applications. Agron J 79:509–512

    Article  CAS  Google Scholar 

  42. Mulkey VR, Owens VN, Lee DK (2006) Management of switchgrass-dominated conservation reserve program lands for biomass production in South Dakota. Crop Sci 46:712–720

    Article  CAS  Google Scholar 

  43. Lee DK, Owens VN, Doolittle JJ (2007) Switchgrass and soil carbon sequestration response to ammonium nitrate, manure, and harvest frequency on conservation reserve program land. Agron J 99:462–468

    Article  CAS  Google Scholar 

  44. Vogel KP, Brejda JJ, Walters DT, Buxton DR (2002) Switchgrass biomass production in the Midwest USA: harvest and nitrogen management. Agron J 94:413–420

    Article  Google Scholar 

  45. Heggenstaller AH, Moore KJ, Liebman M, Anex RP (2009) Nitrogen influences biomass and nutrient partitioning by perennial, warm-season grasses. Agron J 101:1363–1371

    Article  CAS  Google Scholar 

  46. Clark FE (1977) Internal cycling of 15N in shortgrass prairie. Ecology 58:1322–1333

    Article  CAS  Google Scholar 

  47. Brejda JJ (2000) Fertilization of native warm-season grasses. In: Moore KJ, Anderson BE (eds) Native warm-season grasses: research trends and issues. CSSA Spec Publ 30. CSSA, Madison, WI

    Google Scholar 

  48. Hall KE, George JR, Riedl RR (1982) Herbage dry matter yields of switchgrass, big bluestem and Indiangrass with N Fertilization. Agron J 74:47–51

    Article  Google Scholar 

  49. McMurphy WE, Denman CE, Tucker BB (1975) Fertilization of native grass and weeping lovegrass. Agron J 67:233–236

    Article  Google Scholar 

  50. McKenna JR, Wolf DD (1990) No-till switchgrass establishment as affected by limestone, phosphorus, and carbofuran. J Prod Agric 3:475–479

    Article  Google Scholar 

  51. Rehm GW (1984) Yield and quality of a warm-season grass mixture treated with N, P, and atrazine. Agron J 76:731–734

    Article  CAS  Google Scholar 

  52. Lee DK, Boe A (2005) Biomass production of switchgrass in Central South Dakota. Crop Sci 45:2583–2590

    Article  Google Scholar 

  53. Clifton-Brown J, Chiang YC, Hodkinson TR (2008) Miscanthus: genetic resources and breeding potential to enhance bioenergy production. In: Vermerris W (ed) Genetic improvement of bioenergy crops. Springer, New York, pp 273–294

    Google Scholar 

  54. Jones MB, Walsh M (2011) Miscanthus—for energy and fibre. James & James, London

    Google Scholar 

  55. Stewart JR, Toma Y, Fernandez FG, Nishiwaki A, Yamada T, Bollero G (2009) The ecology and agronomy of Miscanthus sinensis, a species important to bioenergy crop development, in its native range in Japan: a review. Glob Chang Biol Bioenergy 1(2):126–153

    Google Scholar 

  56. Scally L, Hodkinson TR, Jones MB (2001) Origins and taxonomy of Miscanthus. In: Jones MB, Walsh M (eds) Miscanthus for energy and fibre. James & James, London

    Google Scholar 

  57. Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19:209–227

    Google Scholar 

  58. Linde-Laursen I (1993) Cytogenetic analysis of Miscanthus ‘Giganteus’, an interspecific hybrid. Hereditas 119:297–300

    Google Scholar 

  59. Hodkinson TR, Chase MW, Takahashi C, Leitch IJ, Bennett MD, Renvoize SA (2002) The use of dna sequencing (ITS and trnL-F), AFLP, and fluorescent in situ hybridization to study allopolyploid Miscanthus (Poaceae). Am J Bot 89(2):279–286

    Article  CAS  PubMed  Google Scholar 

  60. Barney JN, DiTomaso JM (2008) Nonnative species and bioenergy: are we cultivating the next invader? Bioscience 58(1):64–70

    Article  Google Scholar 

  61. Quinn LD, Stewart JR, Yamada T, Toma Y, Saito M, Shimoda K et al (2012) Environmental tolerances of Miscanthus sinensis in invasive and native populations. Bioenergy Res 5:139–148

    Google Scholar 

  62. Pyter R, Heaton E, Dohleman F, Voigt T, Long S (2009) Agronomic experiences with Miscanthus × giganteus in Illinois, USA. In: Mielenz JR (ed) Biofuels: Methods and protocols, vol 2009, New York: Human Press., pp 41–52

    Google Scholar 

  63. Heaton EA, Dohleman FG, Miguez F, Juvik JA, Lozovaya V, Widholm J et al (2010) Miscanthus: a promising biomass crop. Adv Bot Res 56:75–135

    Google Scholar 

  64. Richter GM, Riche AB, Dailey AG, Gezan SA, Powlson DS (2008) Is UK biofuel supply from Miscanthus water-limited? Soil Use Manag 24:235–245

    Google Scholar 

  65. Beale CV, Morison JIL, Long SP (1999) Water use efficiency of C4 perennial grasses in a temperate climate. Agric Forest Meteorol 96:103–115

    Article  Google Scholar 

  66. Dressler U-B (1993) Produktivität, wasserhaushalt und nitratauswaschung von Miscanthus sinensis “Giganteus” (Riesenchinaschilf). Mitteilungen der Gesellschaft für Pfanzenbau-wissenschaften 6:201–204

    Google Scholar 

  67. McIsaac GF, David MB, Mitchell CA (2010) Miscanthus and switchgrass production in central Illinois: impacts on hydrology and inorganic nitrogen leaching. J Environ Qual 39(5):1790–1799

    Google Scholar 

  68. Beale CV, Long SP (1997) The effects of nitrogen and irrigation on the productivity of C4 grasses Miscanthus × giganteus and Spartina cynosuroides. Asp Appl Biol 49:225–230

    Google Scholar 

  69. Mediavilla V, Lehmann J, Meister E, Stünzl H (1997) Biomasseproduktion mit Chinaschilf und einheimischen. Gräsern Agrarforschung 4:295–298

    Google Scholar 

  70. Caslin B, Finnan J, Easson L (2012) Miscanthus best practices guidelines. Teagasc, Crops Research Centre, Ireland and AFBI, Agri-Food and Bioscience Institute, Northern Ireland, 2010. http://www.afbini.gov.uk/miscanthus-best-practice-guidelines.pdf. Accessed 31 Oct 2012

  71. Maughan M, Bollero G, Lee DK, Darmody R, Bonos S, Cortese L et al (2012) Miscanthus × giganteus productivity: the effects of management in different environments. Glob Chang Biol Bioenergy 4(3):253–265

    Google Scholar 

  72. Finch JW, Riche AB (2010) Interception losses from Miscanthus at a site in south-east England—an application of the Gash model. Hydrol Process 24:2594–2600

    Google Scholar 

  73. Heaton EA, Boersma N, Caveny JD, Voigt TB, Dohleman FG (2012) Miscanthus for biofuel production. In: eXtension bioenergy feedstock community of practice. http://www.extension.org/pages/Miscanthus_for_Biofuel_Production. Accessed 31 Oct 2012

  74. Williams MJ, Douglas J (2012) Planting and managing giant miscanthus as a biomass energy crop. Technical Note No. 4. 2011. http://www.plant-materials.nrcs.usda.gov/pubs/flpmstn10548.pdf. Accessed 31 Oct 2012

  75. Caslin B (2012) Energy crops agronomy—lessons to date. In: Energy Crops Manual 2010. Teagasc—The Irish Agriculture and Food Development Authority. http://www.teagasc.ie/publications/2010/20100223/Manual_ Final_10feb10.pdf. Accessed 31 Oct 2012

  76. Anderson E, Arundale R, Maughan M, Oladeinde A, Wycislo A, Voigt T (2011) Growth and agronomy of Miscanthus × giganteus for biomass production. Biofuels 2(2):167–183

    Google Scholar 

  77. Clifton-Brown JC, Lewandowski I (2000) Overwintering problems of newly established Miscanthus plantations can be overcome by identifying genotypes with improved rhizome cold tolerance. New Phytol 148:287–294

    Article  Google Scholar 

  78. Long SP (1983) C4 photosynthesis at low temperatures. Plant Cell Environ 6:345–363

    CAS  Google Scholar 

  79. Dohleman FG, Long SP (2009) More productive than maize in the Midwest: how does Miscanthus do it? Plant Physiol 150:1762–1763

    Article  Google Scholar 

  80. Lewandowski I (1998) Propagation method as an important factor in the growth and development of Miscanthus × giganteus. Ind Crop Prod 8(3):3229–3245

    Article  Google Scholar 

  81. Pyter RJ, Dohleman FG, Voigt TB (2010) Effects of rhizome size, depth of planting and cold storage on Miscanthus × giganteus establishment in the Midwestern USA. Biomass Bioenergy 34(10):1466–1470

    Google Scholar 

  82. Anderson EK, Voigt TB, Bollero GA, Hager AG (2010) Miscanthus × giganteus response to preemergence and postemergence herbicides. Weed Technol 24(4):453–460

    Google Scholar 

  83. Bradshaw JD, Prasifka JR, Steffey KL, Gray ME (2010) First report of field populations of two potential aphid pests of the bioenergy crop Miscanthus × giganteus. Fla Entomol 93(1):135–137

    Google Scholar 

  84. Spencer JL, Raghu S (2009) Refuge or Reservoir? The potential impacts of the biofuel crop Miscanthus × giganteus on a major pest of maize. PLos One 4(12):e8336

    Google Scholar 

  85. Mekete T, Gray ME, Niblack TL (2009) Distribution, morphological description, and molecular characterization of Xiphinema and Longidorous spp. associated with plants (Miscanthus spp. and Panicum virgatum) used for biofuels. Glob Chang Biol Bioenergy 1(4):257–266

    Google Scholar 

  86. Ahonsi MO, Agindotan BO, Williams DW, Arundale R, Gray ME, Voigt TB et al (2010) First report of Pithomyces chartarum causing a leaf blight of Miscanthus × giganteus in Kentucky. Plant Dis 94(4):480

    Google Scholar 

  87. Agindotan BO, Ahonsi MO, Domier LL, Gray ME, Bradley CA (2009) A method for the identification of RNA viruses of miscanthus and switchgrass. Phytopathology 99(6):S2

    Google Scholar 

  88. Christian DG, Riche AB, Yates NE (2008) Growth, yield and mineral content of Miscanthus × giganteus grown as a biofuel for 14 successive harvests. Ind Crop Prod 28:320–327

    Google Scholar 

  89. Himken M, Lammel J, Neukirchen D, Czypionka-Krause U, Olfs H-W (1997) Cultivation of Miscanthus under West European conditions: seasonal changes in dry matter production, nutrient uptake and remobilization. Plant Soil 189:117–126

    Google Scholar 

  90. Schwarz H, Liebhard P, Ehrendorfer K, Ruckenbauer P (1994) The effect of fertilization on yield and quality of Miscanthus sinensis ‘Giganteus’. Ind Crop Prod 2(3):153–159

    Article  Google Scholar 

  91. Clifton-Brown JC, Breuer J, Jones MB (2007) Carbon mitigation by the energy crop, Miscanthus. Glob Chang Biol 13:2296–2307

    Google Scholar 

  92. Ercoli L, Mariotti M, Masoni A, Bonari E (1999) Effect of irrigation and nitrogen fertilization on biomass yield and efficiency of energy use in crop production of Miscanthus. Field Crop Res 63:3–11

    Article  Google Scholar 

  93. Arundale RA (2013) The higher productivity of Miscanthus × giganteus relative to Panicum virgatum is seen both into the long term and beyond Illinois. Dissertation, University of Illinois, Urbana, 2012. University of Illinois Dissertations and Theses. http://hdl.handle.net/2142/34422. Accessed June 2013

  94. Heaton EA, Dohleman FG, Long SP (2008) Meeting US biofuel goals with less land: the potential of Miscanthus. Glob Chang Biol 14:2000–2014

    Google Scholar 

  95. Parrish AS (2013) Yield response to nitrogen fertilization and harvest timing on a mature Miscanthus × giganteus stand. M.S. thesis, University of Illinois, Urbana, 2013. University of Illinois Dissertations and Theses. http://hdl.handle.net/2142/44471. Accessed June 2013

  96. Burner DM, Tew TL, Harvey JJ, Belesky DP (2009) Dry matter partitioning and quality of Miscanthus, Panicum, and Saccharum genotypes in Arkansas, USA. Biomass Bioenergy 33:610–619

    Google Scholar 

  97. Propheter JL, Staggenborg SA, Wu X, Wang D (2010) Performance of annual and perennial biofuel crops: nutrient removal during the first two years. Agron J 102:798–805

    Article  CAS  Google Scholar 

  98. Sollenberger LE, Erickson J, Vendramini J, Gilbert R (2012) Water-use efficiency and feedstock composition of candidate bioenergy grasses in Florida, 2010. In: Florida energy systems. http://www.floridaenergy.ufl.edu/wp-content/uploads/Sollenberger-Water-use-eff-and-feedstock-comp-bioenergy-grasses.pdf. Accessed 31 Oct 2012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas B. Voigt Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lee, D.K., Parrish, A.S., Voigt, T.B. (2014). Switchgrass and Giant Miscanthus Agronomy. In: Shastri, Y., Hansen, A., Rodríguez, L., Ting, K. (eds) Engineering and Science of Biomass Feedstock Production and Provision. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8014-4_3

Download citation

Publish with us

Policies and ethics