Skip to main content

Nonblackbody Radiation

  • Chapter

Part of the book series: Optical Physics and Engineering ((OPEG))

Abstract

None of the natural or artificial objects that we may encounter is a perfectly black body. For example, “black” paper reflects 4.5% of the energy striking it, “black” cloth slightly over 1%, and “black” velvet 0.4%. A fundamental property of a perfectly black body is that its shape, material, and surface characteristics have no bearing whatever on its radiating and absorbing characteristics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. A. G. Blokh, op. cit. (Chap. I, ref. 5).

    Google Scholar 

  2. E. Eckert, “Messung der Reflexion von Wärmestrahlen an technischen Oberflächen,” Forsch. Geb. IngWes., 7: 265–270 (1936).

    Article  Google Scholar 

  3. P. A. Apanasevich et al., op. cit. (Chap. II, ref. 4).

    Google Scholar 

  4. W. E. Forsythe and E. Q. Adams, “Radiating characteristics of tungsten and tungsten lamps,” J. opt. Soc. Am., 35: 108–113 (1945).

    Article  ADS  Google Scholar 

  5. A. P. Ivanov, op. cit. (Chap. I, ref. 4).

    Google Scholar 

  6. M. A. Bramson, I. L. Zel’manovich, and G. I. Kuleshova, “The emissivity of water in the infrared spectral region (thermal physics of the sea)” [in Russian], Trudy glay. geofiz. Obs. Voeikova (Research on Radiative Processes), 152: 31–67 (1964).

    Google Scholar 

  7. L. Z. Kriksunov, A Handbook of Infrared Technology [in Russian] (Riga, 1959 ).

    Google Scholar 

  8. J. D. Hardy, “Radiating power of human skin in infrared,” Am. J. Physiol., 127: 454–462 (1939).

    Google Scholar 

  9. E. Hagen and H. Rubens, “Das Reflexionsvermögen einiger Metalle für ultraviolette und ultrarote Strahlen,” Annln Phys., (4), 8: 1–21 (1902).

    Article  ADS  Google Scholar 

  10. E. Lax and M. Pirani, “Temperaturstrahlung fester Körper,” Handb. Phys., 21 (Chapt. 4): 190–272 (1929).

    Google Scholar 

  11. O. Lummer and E. Pringsheim, “Radiation of blackbodies and platinum” [in German], Verh. dt. phys. Ges., 1: 215–230 (1899).

    Google Scholar 

  12. F. Cennamo, “Sull’emissione spettrale del nichel a varie temperature,” Nuovo Cim., (8), 16: 253–260 (1939).

    Article  Google Scholar 

  13. W. H. J. Childs, Physical Constants, 5th edn. (London, Methuen; New York, Wiley; 1958 ); 79 pp.; Russian translation ( Moscow, Phys. Math. Press, 1961 ).

    Google Scholar 

  14. M. A. Bramson, tabular section of this volume (cf. Chap. I, ref. 8).

    Google Scholar 

  15. E. Hagen and H. Rubens, “Über Beziehungen des Reflexions-und Emissionsvermögens der Metalle zu ihrem elektrischen Leitvermögen,” Annln. Phys., (4), 11: 873–901 (1903).

    Article  Google Scholar 

  16. H. Rubens and E. Hagen, “Über die Änderung des Emissionsvermögens der Metalle mit der Temperatur im kurzwelligen Teil des Ultrarot,” Phys. Z., 11: 139–141 (1910).

    Google Scholar 

  17. W. Weniger, “Infra-red absorption spectra,” Phys. Rev., (1), 31: 388420 (1910).

    Google Scholar 

  18. D. Ya. Svet, in Research on Heat-Resistant Alloys [in Russian], Vol. 4 ( USSR Acad. Sci. Press, 1959 ), pp. 323–328.

    Google Scholar 

  19. A. M. Samarin and D. Ya. Svet, “The emissivity of liquid metals,” Dokl. Akad. Nauk SSSR, 126(1):78–80 (1959) [Soviet Phys. Dokl., 4:667–669 (1959)].

    Google Scholar 

  20. J. C. De Vos, “A new determination of the emissivity of tungsten ribbon,” Physica, 20: 690–714 (1954).

    Article  ADS  Google Scholar 

  21. R. D. Larrabee, “Spectral emissivity of tungsten,” J. opt. Soc. Am., 49: 619–625 (1959).

    Article  ADS  Google Scholar 

  22. S. M. De Corso and R. L. Coit, “Measurement of total emissivities of gas-turbine combustor materials,” Trans. Am. Soc. mech. Engrs., 77: 1189–97 (1955).

    Google Scholar 

  23. B. P. Kozyrev and O. E. Vershinin, “Determination of spectral coefficients of diffuse reflection of infrared radiation from blackened surfaces,” Optika Spektrosk., 6:543–549 (1959) [Optics Spectrosc., 6:345–350 (1959)1.

    Google Scholar 

  24. J. C. Richmond, First Symposium of Surface Effects on Spacecraft Materials ( Palo Alto, Calif., 1960 ), pp. 92–116.

    Google Scholar 

  25. G. D. Gordon, “Measurement of ratio of absorptivity of sunlight to thermal emissivity,” Rev. scient. Instrum., 31: 1204–08 (1960).

    Article  ADS  Google Scholar 

  26. J. T. Bevans and J. T. Gier, “Comparison of total emittances with values computed from spectral measurements,” Trans. Am. Soc. mech. Engrs., Vol. 80, No. 7 (1958).

    Google Scholar 

  27. T. P. Serebryakova, Yu. B. Paderno, and G. V. Samsonov, “Emission coefficients of some powdered high-melting compounds,” Optika Spektrosk., 8:410–412 (1960) [Optics Spectrosc., 8:212–213 (1960)1.

    Google Scholar 

  28. T. Royds, “Das Reflexionsvermögen schwarzer Flächen,” Phys. Z., 11: 316–318 (1910).

    Google Scholar 

  29. William E. Forsythe, ed., Measurement of Radiant Energy ( New York, McGraw-Hill, 1937 ), 452 pp.

    Google Scholar 

  30. J. C. Johnson and J. R. Terrel, “Transmission cross sections for water spheres illuminated by infrared radiation,” J. opt. Soc. Am., 45: 451–455 (1955).

    Article  ADS  Google Scholar 

  31. M. Centano V, “The refractive index of liquid water in the near infrared spectrum,” J. opt. Soc. Am., 31: 244–247 (1941).

    Article  ADS  Google Scholar 

  32. K. S. Shifrin, Scattering of Light in a Turbid Medium [in Russian] ( Moscow, Tech. Theor. Press, 1951 ), 288 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1968 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bramson, M.A. (1968). Nonblackbody Radiation. In: Infrared Radiation. Optical Physics and Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0911-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0911-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0913-1

  • Online ISBN: 978-1-4757-0911-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics