Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 218))

  • 210 Accesses

Abstract

We investigate a finite linear chain of N equal particles connected by equal harmonic springs whose left and right ends are in contact with independent stochastic heat baths at temperatures T 1 and T N , respectively. The heat baths itself can be modelled as a system of coupled oscillators that introduce both fluctuations and dissipation in the chain [1]. In its classical version this model has been studied in [2]. Our starting point are the corresponding quantum Langevin equations [1] for the operators x n (t), P n (t) of the displacement of the n-th particle out of its equilibrium position and its conjugate momentum, respectively. Exploiting the linearity of the system we derive the equations of motion for the equal time correlation functions of the operators x n , p n , i.e. < x n (t)x m (t) >, < x n (t)p m (t) >, etc. For the stationary state we have explicitely determined the covariance matrix in the limit N → ∞, from which all statistical properties of the chain can be inferred. If both temperatures are equal, T 1 = T n , these correlation functions are determined for vanishing damping constant by the standard weak coupling expression < onom > = Z -1 tro n o m exp( — H/k B T), where on is an operator of the particle at site n, H is the Hamiltonian of the chain and Z denotes the partition function. Classically these expressions are exact for all damping constants and yield e.g. equipartitioning of the kinetic energy. In the quantum case finite coupling corrections to the weak coupling expressions are still small well inside the chain but grow towards the end of the chain, where < p n 2 > for n = 1,N diverges logarthmically with an upper cutoff on the frequencies of the heat baths. If the heat baths are at different temperatures, T 1T N , the chain is in a stationary nonequilibrium state, in which the quantum mechanical heat flux is decreased compared to the classical case. We shall discuss the equilibrium and nonequilibrium properties of the harmonic chain in greater detail elsewhere [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. W. Ford, M. Kac, and P. Mazur, J.Math.Phys.6,504 (1965)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Z. Rieder, J L. Lebowitz, and E.H. Lieb, J.Math.Phys.8,1073 (1967)

    Article  ADS  Google Scholar 

  3. U. Zürcher, P. Talkner, to be published

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Zücher, U., Talkner, P. (1990). Quantum Mechanical Harmonic Chain Attached to Heat Baths. In: Baeriswyl, D., Bishop, A.R., Carmelo, J. (eds) Applications of Statistical and Field Theory Methods to Condensed Matter. NATO ASI Series, vol 218. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5763-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5763-6_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5765-0

  • Online ISBN: 978-1-4684-5763-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics