Skip to main content

Regulation of Membrane Fluidity by Lipid Desaturases

  • Chapter
Book cover Membrane Fluidity

Part of the book series: Biomembranes ((B,volume 12))

Abstract

It has long been known that normal prokaryotic as well as eukaryotic cells can grow only when their membrane lipids are largely in the fluid state, i.e., at temperatures above the gel to liquid-crystalline transition temperature (T m) of their membrane lipids (see McElhaney, this volume). Adaptation of bacteria (Cronan, 1975; Fulco, this volume), yeast (Watson, this volume), fungi (Miller and Barran, this volume), higher plants (Mazliak, 1979), and the protozoan Tetrahymena (Thompson and Nozawa, this volume) to temperatures below their normal growth temperatures generally results in changes in membrane lipid composition leading to increases in fatty acid unsaturation. The major factor affecting the fluidity of membrane lipids in eukaryotes, apart from the presence of cholesterol, is the degree of unsaturation of their fatty acid chains. This holds also for prokaryotes but, in addition, other factors such as chain length and branching may be important.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allmann, D. W., Hubbard, D. D., and Gibson, D. M., 1965, Fatty acid synthesis during fat-free refeeding of starved rats, J. Lipid Res. 6:63.

    PubMed  CAS  Google Scholar 

  • Baker, N., and Lynen, F., 1971, Factors involved in fatty acyl CoA desaturation by fungal microsomes: Relative role of acyl CoA and phospholipids as substrates, Ear. J. Biochem. 19:200.

    Article  CAS  Google Scholar 

  • Bloch, K., 1969, Enzymic synthesis of monounsaturated fatty acids, Acc. Chem. Res. 2:193.

    Article  CAS  Google Scholar 

  • Bloomfield, D. K., and Bloch, K., 1960, The formation of Δ9-unsaturated fatty acids, J. Biol. Chem. 235:337.

    PubMed  CAS  Google Scholar 

  • Calabro, M. A., Prasad, M. R., Wakil, S. J., and Joshi, V. C, 1982, Stearoyl-coenzyme A desaturase activity in the mammary gland and liver of lactating rats, Lipids 17:397.

    Article  PubMed  CAS  Google Scholar 

  • Cronan, J. E., Jr., 1975, Thermal regulation of the membrane lipid composition of Escherichia coli, J. Biol. Chem. 250:7074.

    PubMed  CAS  Google Scholar 

  • De Gomez Dumm, I. N. T., de Alaniz, M. J. T., and Brenner, R. R., 1970, Effect of diet on linoleic acid desaturation and on some enzymes of carbohydrate metabolism, J. Lipid Res. 11:96.

    PubMed  Google Scholar 

  • Dickens, B. F., and Thompson, G. A., Jr., 1980, Effects of growth at different temperatures on the physical state of lipids in native microsomal membranes of Tetrahymena, Biochemistry 19:5029.

    Article  PubMed  CAS  Google Scholar 

  • Enoch, H. G., Catala, A., and Strittmatter, P., 1976, Mechanism of rat liver microsomal stearyl-CoA desaturase, J. Biol. Chem. 251:5095.

    PubMed  CAS  Google Scholar 

  • Ferrante, G., and Kates, M., 1983, Pathways for desaturation of oleoyl chains in Candida lipolytica, Can. J. Biochem. Cell Biol. 61:1191.

    Article  PubMed  CAS  Google Scholar 

  • Ferrante, G., Ohno, Y., and Kates, M., 1983, Influence of temperature and growth phase on desaturase activity of the mesophilic yeast Candida lipolytica, Can. J. Biochem. Cell Biol. 61:171.

    Article  PubMed  CAS  Google Scholar 

  • Fukushima, H., Nagao, S., and Nozawa, Y., 1979, Further evidence for changes in the level of palmitoyl-CoA desaturase during thermal adapatation in Tetrahymena pyriformis, Biochim. Biophys. Acta 572:178.

    PubMed  CAS  Google Scholar 

  • Fulco, A. J., 1972, The biosynthesis of unsaturated fatty acids in bacilli. IV. Temperature-mediated control mechanisms, J. Biol. Chem. 247:3511.

    PubMed  CAS  Google Scholar 

  • Holloway, C. T., and Holloway, P. W., 1974, Lipid products formed during desaturation of 1-carbon-14-labeled stearyl CoA by hen liver microsomes, Lipids 9:196.

    Article  PubMed  CAS  Google Scholar 

  • Holloway, C. T., and Holloway, P. W., 1977, The dietary regulation of stearyl coenzyme A desaturase activity and membrane fluidity in the rat aorta, Lipids 12:1025

    Article  PubMed  CAS  Google Scholar 

  • Holloway, P. W., 1971, A requirement for three protein components in microsomal stearyl coenzyme A desaturation, Biochemistry 10:1556.

    Article  PubMed  CAS  Google Scholar 

  • Howling, D., Morris, L. J., Gurr, M. I., and James, A. T., 1972, Specificity of fatty acid desaturases and hydroxylases: Dehydrogenation and hydroxylation of monoenoic acids, Biochim, Biophys. Act. 260:10.

    CAS  Google Scholar 

  • Inkpen, C. A., Harris, R. A., and Quackenbush, F. W., 1969, Differential responses to fasting and subsequent feeding by microsomal systems of rat liver: 6-and 9-desaturation of fatty acids, J. Lipid Res. 10:277.

    PubMed  CAS  Google Scholar 

  • Jeffcoat, R., and James, A. T., 1977, Interrelationship between the dietary regulation of fatty acid synthesis and the fatty acyl-CoA desaturases, Lipids 12:469.

    Article  PubMed  CAS  Google Scholar 

  • Kameyama, Y., Yoshioka, S., and Nozawa, Y., 1980, The occurrence of direct desaturation of phospholipid acyl chain in Tetrahymena pyriformis: Thermal adaptation of membrane phospholipids, Biochim. Biophys. Acta 618:214.

    PubMed  CAS  Google Scholar 

  • Kasai, R., and Nozawa, Y., 1980, Regulatory mechanism of palmitoyl-CoA desaturase activity in thermal adaptation: Induction in non-growing Tetrahymena cells deprived of preexisting desaturase, Biochim. Biophys. Acta 617:161.

    PubMed  CAS  Google Scholar 

  • Kates, M., and Ferrante, G., 1982, Metabolism of oleoyl-CoA in cell fractions of soybean cell suspension cultures, in: Biochemistry and Metabolism of Plant Lipids (J. F. G. M. Wintermans and P. J. C. Kuiper, eds.), pp. 21–24, Elsevier, Amsterdam.

    Google Scholar 

  • Kates, M., and Pugh, E. L., 1980, Role of phospholipid desaturase in control of membrane fluidity, in: Membrane Fluidity: Biophysical Techniques and Cellular Regulation (M. Kates and A. Kuksis, eds.), pp. 153–170, Humana Press, Clifton, N.J.

    Google Scholar 

  • Koudelka, A. P., Kambadur, N., Bradley, D. K., and Ferguson, K. A., 1983a, A cytochrome b 5 electron transport chain in Tetrahymena, Biochim. Biophys. Acta 751:121.

    PubMed  CAS  Google Scholar 

  • Koudelka, A. P., Bradley, D. K., Kambadur, N., and Ferguson, K. A., 1983b, Oleic acid desaturation in Tetrahymena pyriformis, Biochim. Biophys. Acta 751:129.

    PubMed  CAS  Google Scholar 

  • Lippiello, P. M., Holloway, C. T., Garfield, S. A., and Holloway, P. W., 1979, The effects of estradiol on stearyl-CoA desaturase activity and microsomal membrane properties in rooster liver, J. Biol. Chem. 254:2004.

    PubMed  CAS  Google Scholar 

  • Mazliak, P., 1979, Temperature regulation of plant fatty acyl desaturase, in: Low Temperature Stress in Crop Plants: The Role of the Membrane (J. M. Lyons, D. Graham, and J. K. Raison, eds.), pp. 391–404, Academic Press, New York.

    Google Scholar 

  • Nagao, S., Fukushima, H., and Nozawa, Y., 1978, Studies on Tetrahymena membranes: Substrates for desaturation of fatty acyl chains in Tetrahymena pyriformis microsomes, Biochim. Biophys. Acta 530:165.

    PubMed  CAS  Google Scholar 

  • Nozawa, Y., Iida, H., Fukushima, H., Ohki, K., and Ohnishi, S., 1974, Studies on Tetrahymena membranes: Temperature-induced alterations in fatty acid composition of various membrane fractions in Tetrahymena pyriformis and its effect on membrane fluidity as inferred by spin-label study, Biochim. Biophys. Acta 367:134.

    Article  PubMed  CAS  Google Scholar 

  • Okayasu, T., Nagao, M., Ishibashi, T., and Imai, Y., 1981, Purification and partial characterization of linoleoyl-CoA desaturase from rat liver microsomes, Arch. Biochem. Biophys. 206:21.

    Article  PubMed  CAS  Google Scholar 

  • Oshino, N., and Sato, R., 1972, The dietary control of the microsomal stearyl CoA desaturation enzyme system in rat liver, Arch. Biochem. Biophys. 149:369.

    Article  PubMed  CAS  Google Scholar 

  • Paulsrud, J. R., Stewart, S. E., Graff, G., and Holman, R. T., 1970, Desaturation of saturated fatty acids by rat liver microsomes, Lipids 5:611.

    Article  PubMed  CAS  Google Scholar 

  • Pugh, E. L., and Kates, M., 1973, Desaturation of phosphatidylcholine and phosphatidyle-thanolamine by a microsomal enzyme system in Candida lipolytica, Biochim. Biophys. Acta 316:305.

    PubMed  CAS  Google Scholar 

  • Pugh, E. L., and Kates, M., 1975, Characterization of a membrane-bound phospholipid desaturase system of Candida lipolytica, Biochim. Biophys. Acta 380:442.

    PubMed  CAS  Google Scholar 

  • Pugh, E. L., and Kates, M., 1977, Direct desaturation of eicosatrienoyl lecithin to arachidonoyl lecithin by rat liver microsomes, J. Biol. Chem. 252:68.

    PubMed  CAS  Google Scholar 

  • Pugh, E. L., and Kates, M., 1979, Membrane-bound phospholipid desaturases, Lipids 14:159.

    Article  PubMed  CAS  Google Scholar 

  • Pugh, E. L., and Kates, M., 1984, Dietary regulation of acyltransferase & desaturase activities in rat liver microsomal membranes, Lipids 19:48.

    Article  PubMed  CAS  Google Scholar 

  • Pugh, E. L., Kates, M., and Szabo, A. G., 1980, Fluorescence polarization studies of rat liver microsomes with altered phospholipid desaturase activities, Can. J. Biochem. 58:952.

    Article  PubMed  CAS  Google Scholar 

  • Pugh, E. L., Kates, M., and Szabo, A. G., 1982, Studies on fluorescence polarization of 1-acyl-2-cis-or trans-parinaroyl-sn-3-glycerophosphorylcholines in model systems and microsomal membranes, Chem. Phys. Lipids 30:55.

    Article  PubMed  CAS  Google Scholar 

  • Rochester, C. P., and Bishop, D. G., 1982, Biosynthesis of linoleic acid by cell-free extracts of sunflower seeds, in: Biochemistry and Metabolism of Plant Lipids (J. F. G. M. Wintermans and P. J. C. Kuiper, eds.), pp. 57–60, Elsevier, Amsterdam.

    Google Scholar 

  • Roughan, P. G., and Slack, C. R., 1982, Cellular organization of glycerolipid metabolism, Annu. Rev. Plant Physiol. 33:97.

    Article  CAS  Google Scholar 

  • Scott, W. A., 1977a, Unsaturated fatty acid mutants of Neurospora crassa, J. Bacteriol. 130:1144.

    PubMed  CAS  Google Scholar 

  • Scott, W. A., 1977b, Mutations resulting in an unsaturated fatty acid requirement in Neurospora: Evidence for Δ9-desaturase defects, Biochemistry 16:5274.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, H., Prescott, D., and Rabinowitz, J. L., 1978, Preliminary characterization of the delta-9 desaturase of Tetrahymena pyriformis W, Comp. Biochem. Physiol. B 61:513.

    Article  Google Scholar 

  • Sklar, L. A., Miljanich, G. P., and Dratz, E. A., 1979, Phospholipid lateral phase separation and the partition of cis-parinaric acid and trans-parinaric acid among aqueous, solid lipid and fluid lipid phases, Biochemistry 18:1707.

    Article  PubMed  CAS  Google Scholar 

  • Skriver, L., and Thompson, G. A., Jr., 1979, Temperature-induced changes in fatty acid unsaturation of Tetrahymena membranes do not require induced fatty acid desaturase synthesis, Biochim. Biophys. Acta 572:376.

    PubMed  CAS  Google Scholar 

  • Slack, C. R., Roughan, P. G., and Browse, J., 1979, Evidence for an oleoyl-phosphatidylcholine desaturase in microsomal preparations from cotyledons of safflower seed, Biochem. J. 179:649.

    PubMed  CAS  Google Scholar 

  • Sreekrishna, K., Prasad, M. R., Wakil, S. J., and Joshi, V. C, 1981, Interaction of phenols with Δ9 terminal desaturase and other cyanide-sensitive factors in chicken liver microsomes, Biochim. Biophys. Acta 665:427.

    PubMed  CAS  Google Scholar 

  • Strittmatter, P., Spatz, L., Corcoran, D., Rogers, M. J., Setlow, B., and Redline, R., 1974, Purification and properties of rat liver microsomal stearyl coenzyme A desaturase, Proc. Natl. Acad. Sci. USA 71:4565.

    Article  PubMed  CAS  Google Scholar 

  • Stymne, S., and Appelqvist, L.-A., 1978, The biosynthesis of linoleate from oleoyl-CoA via oleoyl-phosphatidylcholine in microsomes of developing safflower seeds, Eur. J. Biochem. 90:223.

    Article  PubMed  CAS  Google Scholar 

  • Stymne, S., and Glad, G., 1981, Acyl exchange between oleoyl-CoA and phosphatidylcholine in microsomes of developing soya bean cotyledons and its role in fatty acid desaturation, Lipids 16:298.

    Article  CAS  Google Scholar 

  • Tahin, Q. S., Blum, M., and Carafoli, E., 1981, The fatty acid composition of subcellular membranes of rat liver, heart, and brain: Diet-induced modifications, Eur. J. Biochem. 121:5.

    Article  PubMed  CAS  Google Scholar 

  • Talamo, B., Chang, N., and Bloch, K., 1973, Desaturation of oleyl phospholipid to linoleyl phospholipid in Torulopsis utilis, J. Biol. Chem. 248:2738.

    PubMed  CAS  Google Scholar 

  • Thompson, G. A., Jr., 1980, Regulation of membrane fluidity during temperature acclimation by Tetrahymena pyriformis, in: Membrane Fluidity: Biophysical Techniques and Cellular Regulation (M. Kates and A. Kuksis, eds.), pp. 381–397, Humana Press, Clifton, N.J.

    Google Scholar 

  • Umeki, S., Fukushima, H., Watanabe, T., and Nozawa, Y., 1982, Thermal acclimation mechanisms in Tetrahymena pyriformis: Effects of decreased temperature on microsomal electron transport, Biochem. Int. 4:101.

    CAS  Google Scholar 

  • Wilson, A. C., and Miller, R. W., 1978, Growth temperature-dependent stearoyl-coenzyme-A desaturase activity of Fusarium oxysporum microsomes, Can. J. Biochem. 56:1109.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, A. C., Wakil, S. J., and Joshi, V. C, 1976, Induction of microsomal stearyl coenzyme A desaturase in newly hatched chicks, Arch. Biochem. Biophys. 173:154.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, A. C., Adams, W. C, and Miller, R. W., 1980, Lipid involvement in oleoyl CoA desaturase activity of Fusarium oxysporum microsomes, Can. J. Biochem. 58:97.

    PubMed  CAS  Google Scholar 

  • Wunderlich, F., Kreutz, W., Mahler, P., Ronai, A., and Heppeler, G., 1978, Thermotropic fluid → ordered “discontinuous” phase separation in microsomal lipids of Tetrahymena: An X-ray diffraction study, Biochemistry 17:2005.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Kates, M., Pugh, E.L., Ferrante, G. (1984). Regulation of Membrane Fluidity by Lipid Desaturases. In: Kates, M., Manson, L.A. (eds) Membrane Fluidity. Biomembranes, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4667-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4667-8_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4669-2

  • Online ISBN: 978-1-4684-4667-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics