Skip to main content

Tradescantia Stamen Hairs: A Radiobiological Test System Applicable to Chemical Mutagenesis

  • Chapter
Book cover Chemical Mutagens

Abstract

Several species in the family Commelinaceae, of which Tradescantia is a member, have features particularly well suited for certain radiobiological studies. Effects produced by ionizing radiations which are easily studied include (1) chromosome aberrations in microspores, root tips, ovaries, and stamen hairs; (2) somatic mutations in petals and stamen hairs in clones heterozygous for flower color; (3) pollen abortion; (4) loss of reproductive integrity in stamen hairs; and (5) whole plant or seedling death. The stamen hairs of Tradescantia clone 02 have also proved to be sensitive to radiation-induced mutations at doses in the millirad region.(1)

This research was carried out at Brookhaven National Laboratory under the auspices of the U.S. Atomic Energy Commission. It was supported in part by the Bureau of Radiological Health, U.S. Public Health Service Research Grant EC-00074, PHS Research Grant CA-12536 from the National Cancer Institute, and the National Aeronautics and Space Administration (Purchase Order A-44246A).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. H. Sparrow, A. G. Underbrink, and H. H. Rossi, Mutations induced in Trades-cantia by small doses of x-rays and neutrons: Analysis of dose-response curves, Science 176, 916–918 (1972).

    Article  PubMed  CAS  Google Scholar 

  2. H. H. Smith and T. A. Lotfy, Comparative effects of certain chemicals on Trades-cantia chromosomes as observed at pollen tube mitosis, Am. J. Botany 41, 589–593 (1954).

    Article  CAS  Google Scholar 

  3. P. S. Rushton, The effects of 5-fluorodeoxyuridine on radiation-induced chromatid aberrations in Tradescantia microspores, Radiation Res. 38, 404–413 (1969).

    Article  PubMed  CAS  Google Scholar 

  4. L. Ehrenberg, in “Chemical Mutagens: Principles and Methods for Their Detection” (A. Hollaender, ed.), Vol. 2, pp. 365–386, Plenum Press, New York (1971).

    Google Scholar 

  5. L. Fishbein, W. G. Flamm, and H. L. Falk, “Chemical Mutagens,” Academic Press, New York (1970).

    Google Scholar 

  6. K. Gröber, F. Scholz, and M. Zacharias (eds.), “Induzierte Mutationen und ihre Nutzung: Erwin-Baur-Gedächtnisvorlesungen IV, 1966,” Akademie-Verlag, Berlin (1967).

    Google Scholar 

  7. B. A. Kihlman, “Action of Chemicals on Dividing Cells,” Prentice-Hall, Englewood Cliffs, N.J. (1966).

    Google Scholar 

  8. B. A. Kihlman, in “Chemical Mutagens: Principles and Methods for Their Detection” (A. Hollaender, ed.), Vol. 2, pp. 489–514, Plenum Press, New York (1971).

    Google Scholar 

  9. A. Loveless, “Genetic and Allied Effects of Alkylating Agents,” Butterworths, London (1966).

    Google Scholar 

  10. A. Loveless, “Symposium on Chromosome Breakage,” Heredity 6 (Suppl.) (1953).

    Google Scholar 

  11. A. H. Sparrow, P. J. Bottino, and L. A. Schairer, in “Report of the Secretary’s Commission on Pesticides and Their Relationship to Environmental Health,” Parts I and II, pp. 575–584, U.S. Department Health, Education and Welfare, Washington, D.C. (1969).

    Google Scholar 

  12. A. H. Sparrow and L. A. Schairer, Mutational response in Tradescantia after an accidental exposure to a chemical mutagen, EMS Newsletter No. 5, 16–19 (1971).

    Google Scholar 

  13. K. A. Jensen, I. Kirk, G. Kolmark, and M. Westergaard, Chemically induced mutations in Neurospora, Cold Spring Harbor Symp. Quant. Biol. 16, 245–261 (1951).

    CAS  Google Scholar 

  14. E. Cerdá-Olmedo and P. C. Hanawalt, Diazomethane as the active agent in nitrosoguanidine mutagenesis and lethality, Mol. Gen. Genet. 101, 191–202 (1968).

    Article  PubMed  Google Scholar 

  15. A. H. Sparrow and L. A. Schairer, Unpublished data.

    Google Scholar 

  16. K. Sax, Chromosome aberrations induced by X-rays, Genetics 23, 494–516 (1938).

    PubMed  CAS  Google Scholar 

  17. M. R. Alvarez and A. H. Sparrow, Comparison of reproductive integrity in the stamen hair and root meristem of Tradescantia paludosa following acute gamma irradiation, Radiation Botany 5, 423–430 (1965).

    Article  Google Scholar 

  18. K. P. Baetcke, C. H. Nauman, A. H. Sparrow, and S. S. Schwemmer, The relationship of DNA content to nuclear and chromosome volumes and to radiosensitivity (LD50), Proc. Natl. Acad. Sci. 58, 533–540 (1967).

    Article  PubMed  CAS  Google Scholar 

  19. A. D. Conger and N. H. Giles, The cytogenetic effect of slow neutrons, Genetics 35, 397–419 (1950).

    PubMed  CAS  Google Scholar 

  20. A. D. Conger, M. L. Randolph, C. W. Sheppard, and H. J. Luippold, Quantitative relation of RBE in Tradescantia and average LET of gamma-rays, x-rays, and 1.3-, 2.5-, and 14.1-MeV fast neutrons, Radiation Res. 9, 525–547 (1958).

    Article  PubMed  CAS  Google Scholar 

  21. D. R. Davies, Radiation-induced chromosome aberrations and loss of reproductive integrity in Tradescantia, Radiation Res. 20, 726–740 (1963).

    Article  PubMed  CAS  Google Scholar 

  22. D. R. Davies and J. L. Bateman, A high relative biological efficiency of 650-keV neutrons and 250-kVp x-rays in somatic mutation induction, Nature 200, 485–486 (1963).

    Article  PubMed  CAS  Google Scholar 

  23. D. R. Davies, A. H. Sparrow, R. G. Woodley, and A. Maschke, Relative biological efficiency of negative μ-mesons and cobalt-60 γ-rays, Nature 200, 277–278 (1963).

    Article  PubMed  CAS  Google Scholar 

  24. J. E. Gunckel, A. H. Sparrow, I. B. Morrow, and E. Christensen, Vegetative and floral morphology of irradiated and non-irradiated plants of Tradescantia paludosa, Am. J. Botany 40, 317–332 (1953).

    Article  CAS  Google Scholar 

  25. S. Ichikawa, A radiobiological study in the stamen hairs of Tradescantia blossfeldiana Mildbr., Seiken Zihô 20, 35–45 (1968).

    Google Scholar 

  26. S. Ichikawa, RBE of 14.1 MeV fast neutrons and 137Cs gamma rays in the stamen hairs of Tradescantia reflexa, Genetics 64 (Suppl. 2), s31 (1970)

    Google Scholar 

  27. S. Ichikawa and A. H. Sparrow, Radiation-induced loss of reproductive integrity in the stamen hairs of a polyploid series of Tradescantia species, Radiation Botany 7, 429–441 (1967).

    Google Scholar 

  28. S. Ichikawa and A. H. Sparrow, Radiation-induced loss of reproductive integrity in the stamen hairs of Tradescantia blossfeldiana Mildbr., a twelve-ploid species, Radiation Botany 7, 333–345 (1967).

    Article  Google Scholar 

  29. S. Ichikawa and A. H. Sparrow, The use of induced somatic mutations to study cell division rates in irradiated stamen hairs of Tradescantia virginiana L., Japan. J. Genet. 43, 57–63 (1968).

    Article  Google Scholar 

  30. S. Ichikawa, A. H. Sparrow, and K. H. Thompson, Morphologically abnormal cells, somatic mutations and loss of reproductive integrity in irradiated Tradescantia stamen hairs, Radiation Botany 9, 195–211 (1969).

    Article  Google Scholar 

  31. A. Kappas, A. H. Sparrow, and M. M. Nawrocky, Relative biological effectiveness (RBE) of 0.43-MeV neutrons and 250-kVp x-rays for somatic aberrations in Tradescantia subacaulis Bush, Radiation Botany 12, 271–281 (1972).

    Article  Google Scholar 

  32. K. M. Marimuthu, L. A. Schairer, and A. H. Sparrow, The effects of space flight factors and gamma radiation on flower production and microspore division and development in Tradescantia, Radiation Botany 10, 249–259 (1970).

    Article  Google Scholar 

  33. K. M. Marimuthu, L. A. Schairer, A. H. Sparrow, and M. M. Nawrocky, Effects of space flight (Biosatellite II) and radiation on female gametophyte development in Tradescantia, Am. J. Botany 59, 359–366 (1972).

    Article  Google Scholar 

  34. K. M. Marimuthu, A. H. Sparrow, and L. A. Schairer, The cytological effects of space flight factors, vibration, clinostat and radiation on root tip cells of Tradescantia, Radiation Res. 42, 105–119 (1970).

    Article  PubMed  CAS  Google Scholar 

  35. L. W. Mericle and R. P. Mericle, Biological discrimination of differences in natural background radiation level, Radiation Botany 5, 475–492 (1965).

    Article  Google Scholar 

  36. L. W. Mericle and R. P. Mericle, Genetic nature of somatic mutations for flower color in Tradescantia, clone 02, Radiation Botany 7, 449–464 (1967).

    Google Scholar 

  37. L. W. Mericle and R. P. Mericle, Mechanisms of somatic “mutation” induction in flowers of hybrid Tradescantia (clone 02), Genetics 56, 576–577 (1967).

    Google Scholar 

  38. L. W. Mericle and R. P. Mericle, in “Induzierte Mutationen und ihre Nutzung: Erwin-Baur-Gedächtnisvorlesungen IV, 1966” (K. Gröber, F. Scholz, and M. Zacharias, eds.), pp. 65–77, Akademie-Verlag, Berlin (1967).

    Google Scholar 

  39. L. W. Mericle and R. P. Mericle, in “Induced Mutations in Plants,” pp. 591–601, International Atomic Energy Agency, Vienna (1969).

    Google Scholar 

  40. G. G. Nayar, K. P. George, and A. R. Gopal-Ayengar, On the biological effects of high background radioactivity: Studies on Tradescantia grown in radioactive monazite sand, Radiation Botany 10, 287–292 (1970).

    Article  Google Scholar 

  41. G. G. Nayar and A. H. Sparrow, Radiation-induced somatic mutations and the loss of reproductive integrity in Tradescantia stamen hairs, Radiation Botany 7, 257–267 (1967).

    Article  Google Scholar 

  42. G. J. Neary and J. R. K. Savage, Chromosome aberrations and the theory of RBE. II. Evidence from track-segment experiments with protons and alpha particles, Internat. J. Radiation Biol. 11, 209–223 (1966).

    Article  CAS  Google Scholar 

  43. J. R. K. Savage, Demonstrating cell division with Tradescantia, School Sci. Rev. 48, 771–782 (1967).

    Google Scholar 

  44. L. A. Schairer, A. H. Sparrow, and K. M. Marimuthu, in “Life Sciences and Space Research” (F. G. Favorite and W. Vishniac, eds.), Vol. 13, pp. 19–24, North-Holland Publishing Co., Amsterdam (1970).

    Google Scholar 

  45. A. H. Sparrow, Comparisons of the tolerances of higher plant species to acute and chronic exposures of ionizing radiation, Japan. J. Genet. 40 (Suppl.), 12–37 (1965).

    CAS  Google Scholar 

  46. A. H. Sparrow, K. P. Baetcke, D. L. Shaver, and V. Pond, The relationship of mutation rate per roentgen to DNA content per chromosome and to interphase chromosome volume, Genetics 59, 65–78 (1968).

    PubMed  CAS  Google Scholar 

  47. A. H. Sparrow, L. A. Schairer, and K. M. Marimuthu, Genetic and Cytologic studies of Tradescantia irradiated during orbital flight, BioScience 18, 582–590 (1968).

    Article  Google Scholar 

  48. A. H. Sparrow, L. A. Schairer, and K. M. Marimuthu, in “The Experiments of Biosatellite II” (J. F. Saunders, ed.), NASA SP-204, pp. 99–122, NASA, Washington, D.C. (1971).

    Google Scholar 

  49. A. H. Sparrow, L. A. Schairer, M. M. Nawrocky, and R. C. Sautkulis, Effects of low temperature and low level chronic gamma radiation on somatic mutation rates in Tradescantia, Radiation Res. 47, 273–274 (1971).

    Google Scholar 

  50. A. H. Sparrow, A. G. Underbrink, and R. C. Sparrow, Chromosomes and cellular radiosensitivity. I. The relationship of D 0 to chromosome volume and complexity in seventy-nine different organisms, Radiation Res. 32, 915–945 (1967).

    Article  PubMed  CAS  Google Scholar 

  51. R. C. Sparrow, A. G. Underbrink, and K. H. Thompson, in “Book of Abstracts,” p. 205, Fourth Internat. Congr. Radiation Res., Evian (1970).

    Google Scholar 

  52. D. Steffensen, Effects of various cation imbalances on the frequency of X-ray-induced chromosomal aberrations in Tradescantia, Genetics 42, 239–252 (1957).

    PubMed  CAS  Google Scholar 

  53. A. G. Underbrink, Monoenergetic neutron experiments with Tradescantia inflorescences, in “Annual Report on Research Project,” NYO-2740-6, pp. 255–268 (1969).

    Google Scholar 

  54. A. G. Underbrink and A. H. Sparrow, Power relations as an expression of relative biological effectiveness (RBE) in Tradescantia stamen hairs, Radiation Res. 46, 580–587 (1971).

    Article  PubMed  CAS  Google Scholar 

  55. A. G. Underbrink, R. C. Sparrow, and A. H. Sparrow, Relations between pheno-typic aberrations and loss of reproductive integrity in Tradescantia stamen hairs, Radiation Botany 11, 473–481 (1971).

    Article  Google Scholar 

  56. A. G. Underbrink, R. C. Sparrow, A. H. Sparrow, and H. H. Rossi, Preliminary report on monoenergetic neutron experiments with Tradescantia, Radiation Res. 39, 463 (1969).

    Google Scholar 

  57. A. G. Underbrink, R. C. Sparrow, A. H. Sparrow, and H. H. Rossi, in “Symposium on Neutrons in Radiobiology,” pp. 373–388, U.S. Atomic Energy Commission, Div. Tech. Information, Oak Ridge, Tenn., CONF-691106 (1969).

    Google Scholar 

  58. A. G. Underbrink, R. C. Sparrow, A. H. Sparrow, and H. H. Rossi, RBEs of X-rays, 0.43-MeV and 80-keV neutrons on somatic mutations and loss of reproductive integrity in Tradescantia stamen hairs, Radiation Res. 43, 246 (1970).

    Google Scholar 

  59. A. G. Underbrink, R. C. Sparrow, A. H. Sparrow, and H. H. Rossi, Relative biological effectiveness of x-rays and 0.43-MeV monoenergetic neutrons on somatic mutations and loss of reproductive integrity in Tradescantia stamen hairs, Radiation Res. 44, 187–203 (1970).

    Article  PubMed  CAS  Google Scholar 

  60. A. G. Underbrink, R. C. Sparrow, A. H. Sparrow, and H. H. Rossi, Relative biological effectiveness of 0.43-MeV and lower energy neutrons on somatic aberrations and hair-length in Tradescantia stamen hairs, Internat. J. Radiation Biol. 19, 215–228 (1971).

    Article  CAS  Google Scholar 

  61. J. Van Hof and A. H. Sparrow, Radiation effects on the growth rate and cell population kinetics of actively growing and dormant roots of Tradescantia paludosa, J. Cell Biol. 26, 187–199 (1965).

    Article  Google Scholar 

  62. A. H. Sparrow and H. J. Evans, Nuclear factors affecting radiosensitivity. I. The influence of nuclear size and structure, chromosome complement and DNA content, Brookhaven Symp. Biol. 14, 76–100 (1961).

    PubMed  CAS  Google Scholar 

  63. J. R. K. Savage and M. A. Pritchard, Campelia zanonia (L.) H.B.K.: A new material for the study of radiation-induced chromosomal aberrations, Radiation Botany 9, 133–139 (1969).

    Article  Google Scholar 

  64. L. G. Parchman, The morphogenesis of stamen hairs of Tradescantia paludosa, Ph. D. thesis, Emory University, Atlanta, Ga. (1964).

    Google Scholar 

  65. A. H. Sparrow, R. L. Cuany, J. P. Miksche, and L. A. Schairer, Some factors affecting the responses of plants to acute and chronic radiation exposures, Radiation Botany 1, 10–34 (1961),.

    Article  Google Scholar 

  66. R. G. Sparrow, Unpublished data.

    Google Scholar 

  67. K. Hummel and K. Staesche, in “Encyclopedia of Plant Anatomy,” 2nd ed., Vol. 4, Part 5, pp. 207–271, Borntraeger, Berlin (1962).

    Google Scholar 

  68. J. C. Th. Uphof, in “Encyclopedia of Plant Anatomy,” 2nd ed., Vol. 4, Part 5, pp. 1–206, Borntraeger, Berlin (1962).

    Google Scholar 

  69. A. G. Underbrink, A. H. Sparrow, and V. Pond, Chromosomes and cellular radiosensitivity. II. Use of interrelationships among chromosome volume, nucleo-tide content and DQ of 120 diverse organisms in predicting radiosensitivity, Radiation Botany (9, 205–237 (1968).

    Article  Google Scholar 

  70. H. H. Rossi, Energy distribution in the absorption of radiation, Advan. Biol. Med. Phys. 11, 27–85 (1967).

    CAS  Google Scholar 

  71. D. Steffensen, Induction of chromosome breakage at meiosis by a magnesium deficiency in Tradescantia, Proc. Natl. Acad. Sci. 39, 613–620 (1953).

    Article  PubMed  CAS  Google Scholar 

  72. K. D. Wuu and W. F. Grant, Morphological and somatic chromosomal aberrations induced by pesticides in barley, Can. J. Genet. Cytol. 8, 481–501 (1966).

    CAS  Google Scholar 

  73. A. D. Conger, A simple liquid-culture method of growing plants, Proc. Fla. State Hort. Soc. 77, 536–537 (1964).

    Google Scholar 

  74. A. D. Conger, “Horticulture Colour Chart,” Vol. 1, British Colour Council in collaboration with the Royal Horticulture Society (1938).

    Google Scholar 

  75. R. F. Smith, Personal communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Plenum Press, New York

About this chapter

Cite this chapter

Underbrink, A.G., Schairer, L.A., Sparrow, A.H. (1973). Tradescantia Stamen Hairs: A Radiobiological Test System Applicable to Chemical Mutagenesis. In: Hollaender, A. (eds) Chemical Mutagens. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8972-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8972-3_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8974-7

  • Online ISBN: 978-1-4615-8972-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics