Skip to main content

Immunologic Outcomes of Allogeneic Stem Cell Transplantation: Graft-Versus-Host and Graft-Versus-Leukemia Responses and Implications for Future Therapy

  • Chapter
  • First Online:
Book cover Advances in Tumor Immunology and Immunotherapy

Part of the book series: Current Cancer Research ((CUCR))

  • 2421 Accesses

Abstract

Allogeneic stem cell transplantation (allo-HCT) is a procedure with the potential to cure many malignant and nonmalignant diseases. The adoptive transfer of a donor immune system into a transplant recipient can result in allorecognition and reactivity of donor immune cells against host target tissues. This can lead to an immune attack against normal tissues in the recipient (graft-versus-host disease, GVHD) but also against the neoplastic cells themselves (graft-versus-tumor effect, GVT). While GVHD has long been recognized as a significant cause of morbidity and mortality after allo-HCT, there has been little progress in advancing the standards of care for GVHD prophylaxis and therapy, which have remain unchanged for more than two decades. Given the more recent recognition that much of the curative benefit of allo-HCT results from the GVT effect, rather than from the cytoreductive effects of conditioning chemotherapy, multiple strategies to take advantage of the GVT effect that aim to limit morbidity and mortality due to GVHD are under investigation, including cellular therapies employing the use of native or engineered graft populations enriched for antitumor responses, and employing donor lymphocyte infusions. Another critical question is how strategies to prevent and/or treat GVHD may be designed to limit the suppression of beneficial T cell responses against pathogens critical to limiting infections in the post-HCT setting. Research in murine models and human subjects has uncovered a great deal regarding the mechanisms of GVHD initiation and persistence, including clinical factors and graft constituents responsible for the acute and chronic forms of GVHD. A variety of cellular mediators, from antigen-presenting cells to effectors, including alloreactive T cells and B cells, have been characterized. Regulatory populations, including CD4+ regulatory T cells and invariant NKT cells, have also been shown to be capable of ameliorating GVHD intensity and survival in model systems. Given this clearer understanding of GVHD pathophysiology, a variety of novel clinical strategies are in development, from those utilizing classical inhibitors of T cell reactivity, to monoclonal antibody therapies to more novel approaches targeting specific signaling pathways in T cells and other mediators of inflammation. Recent meaningful progress has also been made in approaches using adoptive cellular therapies to decrease GVHD while maintaining or specifically augmenting GVT responses. These strategies bring promise for a future wherein more patients can receive allo-HCT for both malignant and nonmalignant diseases, with reduced rates of complications and improved overall survival.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomas ED et al. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N Engl J Med. 1957;257(11):491–6.

    CAS  PubMed  Google Scholar 

  2. Copelan EA. Hematopoietic stem-cell transplantation. N Engl J Med. 2006;354(17):1813–26.

    CAS  PubMed  Google Scholar 

  3. Blazar BR, Murphy WJ, Abedi M. Advances in graft-versus-host disease biology and therapy. Nat Rev Immunol. 2012;12(6):443–58.

    CAS  PubMed  Google Scholar 

  4. Ferrara JL et al. Graft-versus-host disease. Lancet. 2009;373(9674):1550–61.

    CAS  PubMed  Google Scholar 

  5. Shlomchik WD. Graft-versus-host disease. Nat Rev Immunol. 2007;7(5):340–52.

    CAS  PubMed  Google Scholar 

  6. Kolb HJ. Graft-versus-leukemia effects of transplantation and donor lymphocytes. Blood. 2008;112(12):4371–83.

    CAS  PubMed  Google Scholar 

  7. Antin JH. Reduced-intensity stem cell transplantation: “…whereof a little More than a little is by much too much.” King Henry IV, part 1, I, 2. Hematology Am Soc Hematol Educ Program. 2007: 47–54.

    Google Scholar 

  8. Deeg HJ, Antin JH. The clinical spectrum of acute graft-versus-host disease. Semin Hematol. 2006;43(1):24–31.

    PubMed  Google Scholar 

  9. Saliba RM et al. Hyperacute GVHD: risk factors, outcomes, and clinical implications. Blood. 2007;109(7):2751–8.

    CAS  PubMed  Google Scholar 

  10. Filipovich AH. Diagnosis and manifestations of chronic graft-versus-host disease. Best Pract Res Clin Haematol. 2008;21(2):251–7.

    CAS  PubMed  Google Scholar 

  11. Anderson BE et al. Memory CD4+ T cells do not induce graft-versus-host disease. J Clin Invest. 2003;112(1):101–8.

    CAS  PubMed  Google Scholar 

  12. Zheng H et al. Central memory CD8+ T cells induce graft-versus-host disease and mediate graft-versus-leukemia. J Immunol. 2009;182(10):5938–48.

    CAS  PubMed  Google Scholar 

  13. Juchem KW et al. A repertoire-independent and cell-intrinsic defect in murine GVHD induction by effector memory T cells. Blood. 2011;118(23):6209–19.

    CAS  PubMed  Google Scholar 

  14. Iclozan C et al. T helper17 cells are sufficient but not necessary to induce acute graft-versus-host disease. Biol Blood Marrow Transplant. 2010;16(2):170–8.

    CAS  PubMed  Google Scholar 

  15. Hoffmann P et al. Donor-type CD4(+)CD25(+) regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J Exp Med. 2002;196(3):389–99.

    CAS  PubMed  Google Scholar 

  16. Pillai AB et al. Host natural killer T cells induce an interleukin-4-dependent expansion of donor CD4+CD25+Foxp3+ T regulatory cells that protects against graft-versus-host disease. Blood. 2009;113(18):4458–67.

    CAS  PubMed  Google Scholar 

  17. Shimabukuro-Vornhagen A et al. The role of B cells in the pathogenesis of graft-versus-host disease. Blood. 2009;114(24):4919–27.

    PubMed  Google Scholar 

  18. Kessel A et al. Human CD19(+)CD25(high) B regulatory cells suppress proliferation of CD4(+) T cells and enhance Foxp3 and CTLA-4 expression in T-regulatory cells. Autoimmun Rev. 2012;11(9):670–7.

    CAS  PubMed  Google Scholar 

  19. Maeda Y et al. Both perforin and Fas ligand are required for the regulation of alloreactive CD8+ T cells during acute graft-versus-host disease. Blood. 2005;105(5):2023–7.

    CAS  PubMed  Google Scholar 

  20. Shin HJ et al. Rapamycin and IL-2 reduce lethal acute graft-versus-host disease associated with increased expansion of donor type CD4+CD25+Foxp3+ regulatory T cells. Blood. 2011;118(8):2342–50.

    CAS  PubMed  Google Scholar 

  21. Hanash AM et al. Abrogation of donor T-cell IL-21 signaling leads to tissue-specific modulation of immunity and separation of GVHD from GVL. Blood. 2011;118(2):446–55.

    CAS  PubMed  Google Scholar 

  22. Wang X et al. Mechanisms of antigen presentation to T cells in murine graft-versus-host disease: cross-presentation and the appearance of cross-presentation. Blood. 2011;118(24):6426–37.

    CAS  PubMed  Google Scholar 

  23. Saito K et al. Involvement of CD40 ligand-CD40 and CTLA4-B7 pathways in murine acute graft-versus-host disease induced by allogeneic T cells lacking CD28. J Immunol. 1998;160(9):4225–31.

    CAS  PubMed  Google Scholar 

  24. Shlomchik WD et al. Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science. 1999;285(5426):412–5.

    CAS  PubMed  Google Scholar 

  25. Anderson BE et al. Distinct roles for donor- and host-derived antigen-presenting cells and costimulatory molecules in murine chronic graft-versus-host disease: requirements depend on target organ. Blood. 2005;105(5):2227–34.

    CAS  PubMed  Google Scholar 

  26. Matte CC et al. Donor APCs are required for maximal GVHD but not for GVL. Nat Med. 2004;10(9):987–92.

    CAS  PubMed  Google Scholar 

  27. Koyama M et al. Plasmacytoid dendritic cells prime alloreactive T cells to mediate graft-versus-host disease as antigen-presenting cells. Blood. 2009;113(9):2088–95.

    CAS  PubMed  Google Scholar 

  28. Koyama M et al. Recipient nonhematopoietic antigen-presenting cells are sufficient to induce lethal acute graft-versus-host disease. Nat Med. 2012;18(1):135–42.

    CAS  Google Scholar 

  29. Li H et al. Profound depletion of host conventional dendritic cells, plasmacytoid dendritic cells, and B cells does not prevent graft-versus-host disease induction. J Immunol. 2012;188(8):3804–11.

    CAS  PubMed  Google Scholar 

  30. Guinan EC et al. Transplantation of anergic histoincompatible bone marrow allografts. N Engl J Med. 1999;340(22):1704–14.

    CAS  PubMed  Google Scholar 

  31. Prigozhina TB et al. CD40 ligand-specific antibodies synergize with cyclophosphamide to promote long-term transplantation tolerance across MHC barriers but inhibit graft-vs-leukemia effects of transplanted cells. Exp Hematol. 2003;31(1):81–8.

    CAS  PubMed  Google Scholar 

  32. Li J et al. Roles of CD28, CTLA4, and inducible costimulator in acute graft-versus-host disease in mice. Biol Blood Marrow Transplant. 2011;17(7):962–9.

    CAS  PubMed  Google Scholar 

  33. Chen YB et al. Expression of CD30 in patients with acute graft-vs.-host disease. Blood. 2012;120(3):691–6.

    CAS  PubMed  Google Scholar 

  34. Stenger EO et al. Dendritic cells and regulation of graft-versus-host disease and graft-versus-leukemia activity. Blood. 2012;119(22):5088–103.

    CAS  PubMed  Google Scholar 

  35. Cooke KR et al. LPS antagonism reduces graft-versus-host disease and preserves graft-versus-leukemia activity after experimental bone marrow transplantation. J Clin Invest. 2001;107(12):1581–9.

    CAS  PubMed  Google Scholar 

  36. Calcaterra C et al. Critical role of TLR9 in acute graft-versus-host disease. J Immunol. 2008;181(9):6132–9.

    CAS  PubMed  Google Scholar 

  37. Hossain MS et al. Flagellin, a TLR5 agonist, reduces graft-versus-host disease in allogeneic hematopoietic stem cell transplantation recipients while enhancing antiviral immunity. J Immunol. 2011;187(10):5130–40.

    CAS  PubMed  Google Scholar 

  38. Penack O et al. NOD2 regulates hematopoietic cell function during graft-versus-host disease. J Exp Med. 2009;206(10):2101–10.

    CAS  PubMed  Google Scholar 

  39. Wilhelm K et al. Graft-versus-host disease is enhanced by extracellular ATP activating P2X7R. Nat Med. 2010;16(12):1434–8.

    CAS  PubMed  Google Scholar 

  40. Maier T, Holda JH, Claman HN. Graft-vs-host reactions (GVHR) across minor murine histocompatibility barriers. II. Development of natural suppressor cell activity. J Immunol. 1985;135(3):1644–51.

    CAS  PubMed  Google Scholar 

  41. Meunier MC et al. T cells targeted against a single minor histocompatibility antigen can cure solid tumors. Nat Med. 2005;11(11):1222–9.

    CAS  PubMed  Google Scholar 

  42. Zhou S et al. Predominant donor CD103+CD8+ T cell infiltration into the gut epithelium during acute GvHD: a role of gut lymph nodes. Int Immunol. 2008;20(3):385–94.

    CAS  PubMed  Google Scholar 

  43. Kim YM et al. Graft-versus-host disease can be separated from graft-versus-lymphoma effects by control of lymphocyte trafficking with FTY720. J Clin Invest. 2003;111(5):659–69.

    CAS  PubMed  Google Scholar 

  44. Flomenberg N et al. Impact of HLA class I and class II high-resolution matching on outcomes of unrelated donor bone marrow transplantation: HLA-C mismatching is associated with a strong adverse effect on transplantation outcome. Blood. 2004;104(7):1923–30.

    CAS  PubMed  Google Scholar 

  45. Fleischhauer K et al. Effect of T-cell-epitope matching at HLA-DPB1 in recipients of unrelated-donor haemopoietic-cell transplantation: a retrospective study. Lancet Oncol. 2012;13(4):366–74.

    CAS  PubMed  Google Scholar 

  46. Aversa F et al. Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N Engl J Med. 1998;339(17):1186–93.

    CAS  PubMed  Google Scholar 

  47. Cooley S et al. Donor selection for natural killer cell receptor genes leads to superior survival after unrelated transplantation for acute myelogenous leukemia. Blood. 2010;116(14):2411–9.

    CAS  PubMed  Google Scholar 

  48. Petersdorf EW et al. MHC haplotype matching for unrelated hematopoietic cell transplantation. PLoS Med. 2007;4(1):e8.

    PubMed  Google Scholar 

  49. Flowers ME et al. Comparative analysis of risk factors for acute graft-versus-host disease and for chronic graft-versus-host disease according to National Institutes of Health consensus criteria. Blood. 2011;117(11):3214–9.

    CAS  PubMed  Google Scholar 

  50. Soiffer RJ et al. Impact of immune modulation with anti-T-cell antibodies on the outcome of reduced-intensity allogeneic hematopoietic stem cell transplantation for hematologic malignancies. Blood. 2011;117(25):6963–70.

    CAS  PubMed  Google Scholar 

  51. Ho VT et al. Comparison of Tacrolimus and Sirolimus (Tac/Sir) versus Tacrolimus, Sirolimus, and mini-methotrexate (Tac/Sir/MTX) as acute graft-versus-host disease prophylaxis after reduced-intensity conditioning allogeneic peripheral blood stem cell transplantation. Biol Blood Marrow Transplant. 2009;15(7):844–50.

    CAS  PubMed  Google Scholar 

  52. Hsieh MM et al. Allogeneic hematopoietic stem-cell transplantation for sickle cell disease. N Engl J Med. 2009;361(24):2309–17.

    CAS  PubMed  Google Scholar 

  53. Koreth J et al. Interleukin-2 and regulatory T cells in graft-versus-host disease. N Engl J Med. 2011;365(22):2055–66.

    CAS  PubMed  Google Scholar 

  54. Lowsky R et al. Protective conditioning for acute graft-versus-host disease. N Engl J Med. 2005;353(13):1321–31.

    CAS  PubMed  Google Scholar 

  55. Luznik L et al. High-dose cyclophosphamide as single-agent, short-course prophylaxis of graft-versus-host disease. Blood. 2010;115(16):3224–30.

    CAS  PubMed  Google Scholar 

  56. Paczesny S et al. A biomarker panel for acute graft-versus-host disease. Blood. 2009;113(2):273–8.

    CAS  PubMed  Google Scholar 

  57. Choi SW et al. TNF-inhibition with etanercept for graft-versus-host disease prevention in high-risk HCT: lower TNFR1 levels correlate with better outcomes. Biol Blood Marrow Transplant. 2012;18(10):1525–32.

    CAS  PubMed  Google Scholar 

  58. Parmar S et al. Prophylaxis of graft-versus-host disease in unrelated donor transplantation with pentostatin, tacrolimus, and mini-methotrexate: a phase I/II controlled, adaptively randomized study. J Clin Oncol. 2011;29(3):294–302.

    CAS  PubMed  Google Scholar 

  59. Reshef R et al. Blockade of lymphocyte chemotaxis in visceral graft-versus-host disease. N Engl J Med. 2012;367(2):135–45.

    CAS  PubMed  Google Scholar 

  60. Couriel DR et al. A phase III study of infliximab and corticosteroids for the initial treatment of acute graft-versus-host disease. Biol Blood Marrow Transplant. 2009;15(12):1555–62.

    CAS  PubMed  Google Scholar 

  61. Levine JE et al. Etanercept plus methylprednisolone as initial therapy for acute graft-versus-host disease. Blood. 2008;111(4):2470–5.

    CAS  PubMed  Google Scholar 

  62. Alousi AM et al. Etanercept, mycophenolate, denileukin, or pentostatin plus corticosteroids for acute graft-versus-host disease: a randomized phase 2 trial from the Blood and Marrow Transplant Clinical Trials Network. Blood. 2009;114(3):511–7.

    CAS  PubMed  Google Scholar 

  63. Martin PJ et al. First- and second-line systemic treatment of acute graft-versus-host disease: recommendations of the American Society of Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2012;18(8):1150–63.

    PubMed  Google Scholar 

  64. Rao K et al. Improved survival and preserved antiviral responses after combination therapy with daclizumab and infliximab in steroid-refractory graft-versus-host disease. J Pediatr Hematol Oncol. 2009;31(6):456–61.

    CAS  PubMed  Google Scholar 

  65. Kennedy GA et al. Combination antithymocyte globulin and soluble TNFalpha inhibitor (etanercept) +/− mycophenolate mofetil for treatment of steroid refractory acute graft-versus-host disease. Bone Marrow Transplant. 2006;37(12):1143–7.

    CAS  PubMed  Google Scholar 

  66. Ho VT et al. Safety and efficacy of denileukin diftitox in patients with steroid-refractory acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Blood. 2004;104(4):1224–6.

    CAS  PubMed  Google Scholar 

  67. Pidala J et al. Pentostatin as rescue therapy for glucocorticoid-refractory acute and chronic graft-versus-host disease. Ann Transplant. 2010;15(4):21–9.

    CAS  PubMed  Google Scholar 

  68. Hoda D et al. Sirolimus for treatment of steroid-refractory acute graft-versus-host disease. Bone Marrow Transplant. 2010;45(8):1347–51.

    CAS  PubMed  Google Scholar 

  69. Pidala J, Kim J, Anasetti C. Sirolimus as primary treatment of acute graft-versus-host disease following allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2009;15(7):881–5.

    CAS  PubMed  Google Scholar 

  70. Greinix HT et al. Extracorporeal photochemotherapy in the treatment of severe steroid-refractory acute graft-versus-host disease: a pilot study. Blood. 2000;96(7):2426–31.

    CAS  PubMed  Google Scholar 

  71. Le Blanc K et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet. 2008;371(9624):1579–86.

    PubMed  Google Scholar 

  72. Drobyski WR et al. Tocilizumab for the treatment of steroid refractory graft-versus-host disease. Biol Blood Marrow Transplant. 2011;17(12):1862–8.

    CAS  PubMed  Google Scholar 

  73. Pidala J et al. Ustekinumab demonstrates activity in glucocorticoid-refractory acute GVHD. Bone Marrow Transplant. 2012;47(5):747–8.

    CAS  PubMed  Google Scholar 

  74. Sun K et al. Differential effects of proteasome inhibition by bortezomib on murine acute graft-versus-host disease (GVHD): delayed administration of bortezomib results in increased GVHD-dependent gastrointestinal toxicity. Blood. 2005;106(9):3293–9.

    CAS  PubMed  Google Scholar 

  75. Sun K et al. Inhibition of acute graft-versus-host disease with retention of graft-versus-tumor effects by the proteasome inhibitor bortezomib. Proc Natl Acad Sci U S A. 2004;101(21):8120–5.

    CAS  PubMed  Google Scholar 

  76. Koreth J et al. Bortezomib, tacrolimus, and methotrexate for prophylaxis of graft-versus-host disease after reduced-intensity conditioning allogeneic stem cell transplantation from HLA-mismatched unrelated donors. Blood. 2009;114(18):3956–9.

    CAS  PubMed  Google Scholar 

  77. Duramad O et al. Pharmacologic expansion of donor-derived, naturally occurring CD4(+)Foxp3(+) regulatory T cells reduces acute graft-versus-host disease lethality without abrogating the graft-versus-leukemia effect in murine models. Biol Blood Marrow Transplant. 2011;17(8):1154–68.

    CAS  PubMed  Google Scholar 

  78. Feagan BG et al. Treatment of ulcerative colitis with a humanized antibody to the alpha4beta7 integrin. N Engl J Med. 2005;352(24):2499–507.

    CAS  PubMed  Google Scholar 

  79. Reddy P et al. Histone deacetylase inhibition modulates indoleamine 2,3-dioxygenase-dependent DC functions and regulates experimental graft-versus-host disease in mice. J Clin Invest. 2008;118(7):2562–73.

    CAS  PubMed  Google Scholar 

  80. Tao R et al. Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat Med. 2007;13(11):1299–307.

    CAS  PubMed  Google Scholar 

  81. Di Ianni M et al. Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood. 2011;117(14):3921–8.

    PubMed  Google Scholar 

  82. Valenzuela JO et al. PKCtheta is required for alloreactivity and GVHD but not for immune responses toward leukemia and infection in mice. J Clin Invest. 2009;119(12):3774–86.

    CAS  PubMed  Google Scholar 

  83. Socie G et al. Chronic graft-versus-host disease: long-term results from a randomized trial on graft-versus-host disease prophylaxis with or without anti-T-cell globulin ATG-Fresenius. Blood. 2011;117(23):6375–82.

    CAS  PubMed  Google Scholar 

  84. Miklos DB et al. Antibody responses to H-Y minor histocompatibility antigens correlate with chronic graft-versus-host disease and disease remission. Blood. 2005;105(7):2973–8.

    CAS  PubMed  Google Scholar 

  85. Magro L et al. Efficacy of imatinib mesylate in the treatment of refractory sclerodermatous chronic GVHD. Bone Marrow Transplant. 2008;42(11):757–60.

    CAS  PubMed  Google Scholar 

  86. Cutler C et al. Rituximab for steroid-refractory chronic graft-versus-host disease. Blood. 2006;108(2):756–62.

    CAS  PubMed  Google Scholar 

  87. Arai S et al. Prophylactic rituximab after allogeneic transplantation decreases B-cell alloimmunity with low chronic GVHD incidence. Blood. 2012;119(25):6145–54.

    CAS  PubMed  Google Scholar 

  88. Zhou X et al. BAFF promotes Th17 cells and aggravates experimental autoimmune encephalomyelitis. PLoS One. 2011;6(8):e23629.

    CAS  PubMed  Google Scholar 

  89. Jacobi AM et al. Effect of long-term belimumab treatment on B cells in systemic lupus erythematosus: extension of a phase II, double-blind, placebo-controlled, dose-ranging study. Arthritis Rheum. 2010;62(1):201–10.

    CAS  PubMed  Google Scholar 

  90. Jedlickova Z et al. Therapy of sclerodermatous chronic graft-versus-host disease with mammalian target of rapamycin inhibitors. Biol Blood Marrow Transplant. 2011;17(5):657–63.

    CAS  PubMed  Google Scholar 

  91. Biagi E et al. Extracorporeal photochemotherapy is accompanied by increasing levels of circulating CD4+CD25+GITR+Foxp3+CD62L+functional regulatory T-cells in patients with graft-versus-host disease. Transplantation. 2007;84(1):31–9.

    CAS  PubMed  Google Scholar 

  92. Koc S et al. Therapy for chronic graft-versus-host disease: a randomized trial comparing cyclosporine plus prednisone versus prednisone alone. Blood. 2002;100(1):48–51.

    CAS  PubMed  Google Scholar 

  93. Dignan FL et al. Organ-specific management and supportive care in chronic graft-versus-host disease. Br J Haematol. 2012;158(1):62–78.

    CAS  PubMed  Google Scholar 

  94. Dignan FL et al. Diagnosis and management of chronic graft-versus-host disease. Br J Haematol. 2012;158(1):46–61.

    CAS  PubMed  Google Scholar 

  95. Inamoto Y, Flowers ME. Treatment of chronic graft-versus-host disease in 2011. Curr Opin Hematol. 2011;18(6):414–20.

    CAS  PubMed  Google Scholar 

  96. Wolff D et al. Consensus conference on clinical practice in chronic graft-versus-host disease (GVHD): first-line and topical treatment of chronic GVHD. Biol Blood Marrow Transplant. 2010;16(12):1611–28.

    PubMed  Google Scholar 

  97. Vogelsang GB et al. Thalidomide for the treatment of chronic graft-versus-host disease. N Engl J Med. 1992;326(16):1055–8.

    CAS  PubMed  Google Scholar 

  98. Chiang KY et al. Recombinant human tumor necrosis factor receptor fusion protein as complementary treatment for chronic graft-versus-host disease. Transplantation. 2002;73(4):665–7.

    CAS  PubMed  Google Scholar 

  99. Robin M et al. Low-dose thoracoabdominal irradiation for the treatment of refractory chronic graft-versus-host disease. Transplantation. 2005;80(5):634–42.

    PubMed  Google Scholar 

  100. Lawitschka A, Ball L, Peters C. Nonpharmacologic treatment of chronic graft-versus-host disease in children and adolescents. Biol Blood Marrow Transplant. 2012;18(1 Suppl):S74–81.

    PubMed  Google Scholar 

  101. Couriel D et al. Ancillary therapy and supportive care of chronic graft-versus-host disease: national institutes of health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: V. Ancillary Therapy and Supportive Care Working Group report. Biol Blood Marrow Transplant. 2006;12(4):375–96.

    PubMed  Google Scholar 

  102. Hildebrandt GC et al. Diagnosis and treatment of pulmonary chronic GVHD: report from the consensus conference on clinical practice in chronic GVHD. Bone Marrow Transplant. 2011;46(10):1283–95.

    CAS  PubMed  Google Scholar 

  103. Attal M et al. Maintenance therapy with thalidomide improves survival in patients with multiple myeloma. Blood. 2006;108(10):3289–94.

    CAS  PubMed  Google Scholar 

  104. Badros AZ. Lenalidomide in myeloma–a high-maintenance friend. N Engl J Med. 2012;366(19):1836–8.

    CAS  PubMed  Google Scholar 

  105. Klyuchnikov E et al. Current status and perspectives of tyrosine kinase inhibitor treatment in the posttransplant period in patients with chronic myelogenous leukemia (CML). Biol Blood Marrow Transplant. 2010;16(3):301–10.

    CAS  PubMed  Google Scholar 

  106. Cetkovic-Cvrlje M, Uckun FM. Dual targeting of Bruton’s tyrosine kinase and Janus kinase 3 with rationally designed inhibitors prevents graft-versus-host disease (GVHD) in a murine allogeneic bone marrow transplantation model. Br J Haematol. 2004;126(6):821–7.

    CAS  PubMed  Google Scholar 

  107. de Lima M et al. Maintenance therapy with low-dose azacitidine after allogeneic hematopoietic stem cell transplantation for recurrent acute myelogenous leukemia or myelodysplastic syndrome: a dose and schedule finding study. Cancer. 2010;116(23):5420–31.

    PubMed  Google Scholar 

  108. Tsirigotis P et al. Post-autologous stem cell transplantation administration of rituximab improves the outcome of patients with aggressive B cell non-Hodgkin’s lymphoma. Ann Hematol. 2010;89(3):263–72.

    CAS  PubMed  Google Scholar 

  109. Kohrt HE et al. CD137 stimulation enhances the antilymphoma activity of anti-CD20 antibodies. Blood. 2011;117(8):2423–32.

    CAS  PubMed  Google Scholar 

  110. Chao MP et al. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell. 2010;142(5):699–713.

    CAS  PubMed  Google Scholar 

  111. Bashey A et al. CTLA4 blockade with ipilimumab to treat relapse of malignancy after allogeneic hematopoietic cell transplantation. Blood. 2009;113(7):1581–8.

    CAS  PubMed  Google Scholar 

  112. Yi JS, Du M, Zajac AJ. A vital role for interleukin-21 in the control of a chronic viral infection. Science. 2009;324(5934):1572–6.

    CAS  PubMed  Google Scholar 

  113. Schmidt H et al. Safety and clinical effect of subcutaneous human interleukin-21 in patients with metastatic melanoma or renal cell carcinoma: a phase I trial. Clin Cancer Res. 2010;16(21):5312–9.

    CAS  PubMed  Google Scholar 

  114. Morgan RA et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science. 2006;314(5796):126–9.

    CAS  PubMed  Google Scholar 

  115. Dudley ME et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science. 2002;298(5594):850–4.

    CAS  PubMed  Google Scholar 

  116. Rezvani K et al. Leukemia-associated antigen-specific T-cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies. Blood. 2008;111(1):236–42.

    CAS  PubMed  Google Scholar 

  117. Van Tendeloo VF et al. Induction of complete and molecular remissions in acute myeloid leukemia by Wilms’ tumor 1 antigen-targeted dendritic cell vaccination. Proc Natl Acad Sci U S A. 2010;107(31):13824–9.

    PubMed  Google Scholar 

  118. Zilberberg J et al. Treatment with GM-CSF secreting myeloid leukemia cell vaccine prior to autologous-BMT improves the survival of leukemia-challenged mice. Biol Blood Marrow Transplant. 2011;17(3):330–40.

    CAS  PubMed  Google Scholar 

  119. Klammer M et al. Fusion hybrids of dendritic cells and autologous myeloid blasts as a potential cellular vaccine for acute myeloid leukaemia. Br J Haematol. 2005;129(3):340–9.

    CAS  PubMed  Google Scholar 

  120. Rosenblatt J et al. Vaccination with dendritic cell/tumor fusion cells results in cellular and humoral antitumor immune responses in patients with multiple myeloma. Blood. 2011;117(2):393–402.

    CAS  PubMed  Google Scholar 

  121. Vasir B et al. Fusion of dendritic cells with multiple myeloma cells results in maturation and enhanced antigen presentation. Br J Haematol. 2005;129(5):687–700.

    CAS  PubMed  Google Scholar 

  122. Kasturi SP et al. Programming the magnitude and persistence of antibody responses with innate immunity. Nature. 2011;470(7335):543–7.

    CAS  PubMed  Google Scholar 

  123. Till BG et al. CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results. Blood. 2012;119(17):3940–50.

    CAS  PubMed  Google Scholar 

  124. Kochenderfer JN et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood. 2012;119(12):2709–20.

    CAS  PubMed  Google Scholar 

  125. Louis CU et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood. 2011;118(23):6050–6.

    CAS  PubMed  Google Scholar 

  126. Kochenderfer JN et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood. 2010;116(20):4099–102.

    CAS  PubMed  Google Scholar 

  127. Kochenderfer JN, Rosenberg SA. Chimeric antigen receptor-modified T cells in CLL. N Engl J Med. 2011;365(20):1937–8. author reply 1938.

    CAS  PubMed  Google Scholar 

  128. Porter DL et al. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365(8):725–33.

    CAS  PubMed  Google Scholar 

  129. Miller JS et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood. 2005;105(8):3051–7.

    CAS  PubMed  Google Scholar 

  130. Geller MA et al. A phase II study of allogeneic natural killer cell therapy to treat patients with recurrent ovarian and breast cancer. Cytotherapy. 2011;13(1):98–107.

    CAS  PubMed  Google Scholar 

  131. Louis CU et al. Enhancing the in vivo expansion of adoptively transferred EBV-specific CTL with lymphodepleting CD45 monoclonal antibodies in NPC patients. Blood. 2009;113(11):2442–50.

    CAS  PubMed  Google Scholar 

  132. Straathof KC et al. Treatment of nasopharyngeal carcinoma with Epstein-Barr virus–specific T lymphocytes. Blood. 2005;105(5):1898–904.

    CAS  PubMed  Google Scholar 

  133. Mackensen A et al. Phase I study of adoptive T-cell therapy using antigen-specific CD8+ T cells for the treatment of patients with metastatic melanoma. J Clin Oncol. 2006;24(31):5060–9.

    CAS  PubMed  Google Scholar 

  134. Warren EH et al. Therapy of relapsed leukemia after allogeneic hematopoietic cell transplantation with T cells specific for minor histocompatibility antigens. Blood. 2010;115(19):3869–78.

    CAS  PubMed  Google Scholar 

  135. Kolb HJ et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood. 1990;76(12):2462–5.

    CAS  PubMed  Google Scholar 

  136. Porter DL, Antin JH. Donor leukocyte infusions in myeloid malignancies: new strategies. Best Pract Res Clin Haematol. 2006;19(4):737–55.

    CAS  PubMed  Google Scholar 

  137. Warlick ED et al. Successful remission rates and survival after lymphodepleting chemotherapy and donor lymphocyte infusion for relapsed hematologic malignancies postallogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2012;18(3):480–6.

    PubMed  Google Scholar 

  138. Mielcarek M et al. Outcomes among patients with recurrent high-risk hematologic malignancies after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2007;13(10):1160–8.

    PubMed  Google Scholar 

  139. Miller JS et al. Lymphodepletion followed by donor lymphocyte infusion (DLI) causes significantly more acute graft-versus-host disease than DLI alone. Blood. 2007;110(7):2761–3.

    CAS  PubMed  Google Scholar 

  140. Guglielmi C et al. Donor lymphocyte infusion for relapsed chronic myelogenous leukemia: prognostic relevance of the initial cell dose. Blood. 2002;100(2):397–405.

    CAS  PubMed  Google Scholar 

  141. Chen X et al. Interferon alpha in combination with GM-CSF induces the differentiation of leukaemic antigen-presenting cells that have the capacity to stimulate a specific anti-leukaemic cytotoxic T-cell response from patients with chronic myeloid leukaemia. Br J Haematol. 2000;111(2):596–607.

    CAS  PubMed  Google Scholar 

  142. Savani BN et al. Imatinib synergizes with donor lymphocyte infusions to achieve rapid molecular remission of CML relapsing after allogeneic stem cell transplantation. Bone Marrow Transplant. 2005;36(11):1009–15.

    CAS  PubMed  Google Scholar 

  143. Levenga H et al. Multiple myeloma patients receiving pre-emptive donor lymphocyte infusion after partial T-cell-depleted allogeneic stem cell transplantation show a long progression-free survival. Bone Marrow Transplant. 2007;40(4):355–9.

    CAS  PubMed  Google Scholar 

  144. Bellucci R et al. Graft-versus-tumor response in patients with multiple myeloma is associated with antibody response to BCMA, a plasma-cell membrane receptor. Blood. 2005;105(10):3945–50.

    CAS  PubMed  Google Scholar 

  145. Zeiser R et al. Donor lymphocyte infusions for multiple myeloma: clinical results and novel perspectives. Bone Marrow Transplant. 2004;34(11):923–8.

    CAS  PubMed  Google Scholar 

  146. Kroger N et al. Post-transplant immunotherapy with donor-lymphocyte infusion and novel agents to upgrade partial into complete and molecular remission in allografted patients with multiple myeloma. Exp Hematol. 2009;37(7):791–8.

    PubMed  Google Scholar 

  147. Kroger N et al. Low-dose thalidomide and donor lymphocyte infusion as adoptive immunotherapy after allogeneic stem cell transplantation in patients with multiple myeloma. Blood. 2004;104(10):3361–3.

    PubMed  Google Scholar 

  148. El-Cheikh J et al. Lenalidomide plus donor-lymphocytes infusion after allogeneic stem-cell transplantation with reduced-intensity conditioning in patients with high-risk multiple myeloma. Exp Hematol. 2012;40(7):521–7.

    CAS  PubMed  Google Scholar 

  149. Schmid C et al. Donor lymphocyte infusion in the treatment of first hematological relapse after allogeneic stem-cell transplantation in adults with acute myeloid leukemia: a retrospective risk factors analysis and comparison with other strategies by the EBMT Acute Leukemia Working Party. J Clin Oncol. 2007;25(31):4938–45.

    CAS  PubMed  Google Scholar 

  150. Levine JE et al. Prospective trial of chemotherapy and donor leukocyte infusions for relapse of advanced myeloid malignancies after allogeneic stem-cell transplantation. J Clin Oncol. 2002;20(2):405–12.

    CAS  PubMed  Google Scholar 

  151. Schmid C et al. Low-dose ARAC, donor cells, and GM-CSF for treatment of recurrent acute myeloid leukemia after allogeneic stem cell transplantation. Leukemia. 2004;18(8):1430–3.

    CAS  PubMed  Google Scholar 

  152. Lubbert M et al. Efficacy of a 3-day, low-dose treatment with 5-azacytidine followed by donor lymphocyte infusions in older patients with acute myeloid leukemia or chronic myelomonocytic leukemia relapsed after allografting. Bone Marrow Transplant. 2010;45(4):627–32.

    CAS  PubMed  Google Scholar 

  153. Eapen M et al. Second transplant for acute and chronic leukemia relapsing after first HLA-identical sibling transplant. Bone Marrow Transplant. 2004;34(8):721–7.

    CAS  PubMed  Google Scholar 

  154. Schmid C et al. Early allo-SCT for AML with a complex aberrant karyotype–results from a prospective pilot study. Bone Marrow Transplant. 2012;47(1):46–53.

    CAS  PubMed  Google Scholar 

  155. Schmid C et al. Long-term survival in refractory acute myeloid leukemia after sequential treatment with chemotherapy and reduced-intensity conditioning for allogeneic stem cell transplantation. Blood. 2006;108(3):1092–9.

    CAS  PubMed  Google Scholar 

  156. Schmid C et al. Sequential regimen of chemotherapy, reduced-intensity conditioning for allogeneic stem-cell transplantation, and prophylactic donor lymphocyte transfusion in high-risk acute myeloid leukemia and myelodysplastic syndrome. J Clin Oncol. 2005;23(24):5675–87.

    PubMed  Google Scholar 

  157. Beck JF et al. Relapse of childhood ALL, AML and MDS after allogeneic stem cell transplantation can be prevented by donor lymphocyte infusion in a critical stage of increasing mixed chimerism. Klin Padiatr. 2002;214(4):201–5.

    CAS  PubMed  Google Scholar 

  158. Thomson KJ et al. T-cell-depleted reduced-intensity transplantation followed by donor leukocyte infusions to promote graft-versus-lymphoma activity results in excellent long-term survival in patients with multiply relapsed follicular lymphoma. J Clin Oncol. 2010;28(23):3695–700.

    PubMed  Google Scholar 

  159. Cook G et al. Outcome following reduced-intensity allogeneic stem cell transplantation (RIC AlloSCT) for relapsed and refractory mantle cell lymphoma (MCL): a study of the British Society for Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2010;16(10):1419–27.

    PubMed  Google Scholar 

  160. Bishop MR et al. Clinical evidence of a graft-versus-lymphoma effect against relapsed diffuse large B-cell lymphoma after allogeneic hematopoietic stem-cell transplantation. Ann Oncol. 2008;19(11):1935–40.

    CAS  PubMed  Google Scholar 

  161. Thomson KJ et al. Superiority of reduced-intensity allogeneic transplantation over conventional treatment for relapse of Hodgkin’s lymphoma following autologous stem cell transplantation. Bone Marrow Transplant. 2008;41(9):765–70.

    CAS  PubMed  Google Scholar 

  162. Russell NH et al. Donor lymphocyte infusions can result in sustained remissions in patients with residual or relapsed lymphoid malignancy following allogeneic haemopoietic stem cell transplantation. Bone Marrow Transplant. 2005;36(5):437–41.

    CAS  PubMed  Google Scholar 

  163. Slavin S et al. Allogeneic cell therapy with donor peripheral blood cells and recombinant human interleukin-2 to treat leukemia relapse after allogeneic bone marrow transplantation. Blood. 1996;87(6):2195–204.

    CAS  PubMed  Google Scholar 

  164. Choi SJ et al. Treatment of relapsed acute lymphoblastic leukemia after allogeneic bone marrow transplantation with chemotherapy followed by G-CSF-primed donor leukocyte infusion: a prospective study. Bone Marrow Transplant. 2005;36(2):163–9.

    CAS  PubMed  Google Scholar 

  165. Collins Jr RH et al. Donor leukocyte infusions in acute lymphocytic leukemia. Bone Marrow Transplant. 2000;26(5):511–6.

    PubMed  Google Scholar 

  166. Johnson BD et al. Role of immunoregulatory donor T cells in suppression of graft-versus-host disease following donor leukocyte infusion therapy. J Immunol. 1999;163(12):6479–87.

    CAS  PubMed  Google Scholar 

  167. Kolb HJ et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood. 1995;86(5):2041–50.

    CAS  PubMed  Google Scholar 

  168. Miller JS et al. NCI first international workshop on the biology, prevention, and treatment of relapse after allogeneic hematopoietic stem cell transplantation: Report from the Committee on the Biology Underlying Recurrence of Malignant Disease following allogeneic HSCT: graft-versus-tumor/leukemia reaction. Biol Blood Marrow Transplant. 2010;16(5):565–86.

    PubMed  Google Scholar 

  169. van den Brink MR et al. Relapse after allogeneic hematopoietic cell therapy. Biol Blood Marrow Transplant. 2010;16(1 Suppl):S138–45.

    PubMed  Google Scholar 

  170. Garicochea B et al. Aplasia after donor lymphocyte infusion (DLI) for CML in relapse after sex-mismatched BMT: recovery of donor-type haemopoiesis predicted by non-isotopic in situ hybridization (ISH). Br J Haematol. 1994;88(2):400–2.

    CAS  PubMed  Google Scholar 

  171. Levine JE et al. Acute graft-versus-host disease biomarkers measured during therapy can predict treatment outcomes: a Blood and Marrow Transplant Clinical Trials Network study. Blood. 2012;119(16):3854–60.

    CAS  PubMed  Google Scholar 

  172. Harris AC et al. Plasma biomarkers of lower gastrointestinal and liver acute GVHD. Blood. 2012;119(12):2960–3.

    CAS  PubMed  Google Scholar 

  173. Clark WB et al. Genetic variation in recipient B-cell activating factor modulates phenotype of GVHD. Blood. 2011;118(4):1140–4.

    CAS  PubMed  Google Scholar 

  174. Sarantopoulos S et al. High levels of B-cell activating factor in patients with active chronic graft-versus-host disease. Clin Cancer Res. 2007;13(20):6107–14.

    CAS  PubMed  Google Scholar 

  175. Nieto Y et al. High-dose infusional gemcitabine combined with busulfan and melphalan with autologous stem-cell transplant in patients with refractory lymphoid malignancies. Biol Blood Marrow Transplant. 2012;18(8):1150–63.

    PubMed  Google Scholar 

  176. Anderlini P et al. Gemcitabine, fludarabine and melphalan as a reduced-intensity conditioning regimen for allogeneic stem cell transplant in relapsed and refractory Hodgkin lymphoma: preliminary results. Leuk Lymphoma. 2012;53(3):499–502.

    CAS  PubMed  Google Scholar 

  177. Oki Y et al. Phase 2 study of gemcitabine in combination with rituximab in patients with recurrent or refractory Hodgkin lymphoma. Cancer. 2008;112(4):831–6.

    CAS  PubMed  Google Scholar 

  178. Visani G et al. BeEAM (bendamustine, etoposide, cytarabine, melphalan) before autologous stem cell transplantation is safe and effective for resistant/relapsed lymphoma patients. Blood. 2011;118(12):3419–25.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna V. Komanduri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lekakis, L.J., Komanduri, K.V. (2014). Immunologic Outcomes of Allogeneic Stem Cell Transplantation: Graft-Versus-Host and Graft-Versus-Leukemia Responses and Implications for Future Therapy. In: Rosenblatt, J., Podack, E., Barber, G., Ochoa, A. (eds) Advances in Tumor Immunology and Immunotherapy. Current Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8809-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8809-5_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8808-8

  • Online ISBN: 978-1-4614-8809-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics