Skip to main content

Photobiont Diversity of Soil Crust Lichens Along Substrate Ecology and Altitudinal Gradients in Himalayas: A Case Study from Garhwal Himalaya

  • Chapter
  • First Online:
Terricolous Lichens in India

Abstract

The symbiotic coevolution of algae and fungi in lichens has been instrumental in overall success of lichens in some of the most unfavourable habitats of the planet. Himalayas by virtue of their fragile temperature regime and diverse topography allow variety of lichen functional groups to flourish. Among these, soil-inhabiting terricolous lichens have proved to be good indicators of habitat heterogeneity and zooanthropogenic pressures. Photobiont diversity of terricolous lichens of Garhwal Himalayas showed the dominance of Chlorophyta (70 %) over Cyanoprokaryota (30 %) as photobionts. The ecological preference analysis of the photobionts indicated that majority of photobionts preferred lichens belonging to terricolous or terricolous–rupicolous ecological subgroups. Asterochloris dominated in the both subgroups, whereas Nostoc was common in muscicolous–rupicolous subgroup. The comparative dominance of the photobionts in ecological subgroups was a function of hydration preferences of photobionts. Cyanobionts dominate niches which can hold water for longer period, whereas dominate green algal chlorobionts dominate the rest. The altitudinal preferences showed that lichen species with Asterochloris were found in the range of 2,300–3,700 m, followed by Scytonema at 1,700–3,900 m, Nostoc at 2,100–3,500 m and Trebouxia at 2,800–4,000 m. As the maximum richness was within the range of 2,800–3,500-m altitude, it is evident that the diversity drivers of lichen photobionts were climatic factors (i.e. light intensity, humidity/precipitation and temperature).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmadjian V (1993) The Lichen Symbiosis. Wiley, New York, 250 p

    Google Scholar 

  • Aoki M, Nakano T, Kanda H, Deguchi H (1998) Photobionts isolated from Antarctic lichens. J Mar Biotechnol 6:39–43

    Google Scholar 

  • Archibald PA (1975) Trebouxia de Puymaly (Chlorophyceae, Chlorococcales) and Pseudotrebouxia gen. nov. (Chlorophyceae, Chlorococcales). Phycologia 14:125–137

    Article  Google Scholar 

  • Aude E, Poulsen RS (2000) Influence of management on the species composition of epiphytic cryptogams in Danish Fagus forests. App Veg Sci 3:81–88

    Article  Google Scholar 

  • Awasthi DD (2007) A compendium of the macrolichens from India, Nepal and SriLanka. Bishen Singh Mahendra Pal Singh, Dehra Dun. p 580

    Google Scholar 

  • Bačkor M, Peksa O, Škaloud P, Bačkorová M (2010) Photobiont diversity in lichens from metal-rich substrata based on ITS rDNA sequences. Ecotox Environ Safe 73:603–612

    Article  Google Scholar 

  • Barkman JJ (1958) Phytosociology and ecology of cryptogamic epiphytes. Van Gorcum, Assen. Netherlands, 628 p

    Google Scholar 

  • Barros AP, Chiao S, Lang TJ, Burbank D, Putkonen J (2006) From weather to climate Seasonal and interannual variability of storms and implications for erosion processes in the Himalaya, In: Willett SD, Hovius N, Brandon MT, Fisher D (eds) Tectonics, Climate, and Landscape Evolution: Geological Society of America Special Paper 398: p 17–38

    Google Scholar 

  • Beck A (1999) Photobiont inventory of a lichen community growing on heavy-metal-rich rock. Lichenologist 31:501–510

    Google Scholar 

  • Beck A (2002) Selectivität der Symbionten schwermetalltoleranter Flechten.—Dissertation. München, 196 p, ISBN: 3-9808102-0–8

    Google Scholar 

  • Beck A, Kasalicky T, Rambold G (2002) Myco-photobiontal selection in a Mediterranean cryptogam community with Fulgensia fulgida. New Phytol 153:317–326

    Article  Google Scholar 

  • Bubrick P, Galun M, Frensdorff A (1984) Observations on free-living Trebouxia de Puymaly and Pseudotrebouxia Archibald, and evidence that both symbionts from Xanthoria parietina (L.) Th. Fr. can be found free-living in nature. New Phytol 97:455–462

    Article  Google Scholar 

  • Büdel B, Lange OL (1991) Water status of green and blue-green phycobionts in lichen thalli after hydration by water vapor uptake: do they become turgid? Bot Acta 104:361–366

    Google Scholar 

  • Cordeiro LMC, Reis RA, Cruz LM, Stocker-Worgotter E, Grube M, Iacomini M (2005) Molecular studies of photobionts of selected lichens from coastal vegetation of Brasil. FEMS Microbiol Ecol 54:381–390

    Article  PubMed  CAS  Google Scholar 

  • Dahkild A, Källersjö M, Lohtander K, Tehler A (2001) Photobiont diversity in the Physciaceae (Lecanorales). Bryologist 104(4):527–536

    Article  Google Scholar 

  • Duvigneaud P (1955) Les Stereocaulon des hautes montanges du Kivu. Lejeunia Mem 14:1–9

    Google Scholar 

  • Ekman S (2004) Mycobilimbia. In: Nash TH, Rayan BD, Gries C, Bungartz F (eds) Lichen flora of the great Sonoran Desert Region: most of the microlichens, balance of the macrolichens, and the lichenicolous fungi. Vol. 2. Arizona: Lichens Unlimited, Arizona State University, 365–367

    Google Scholar 

  • Engelen A, Convey P, Ott S (2010) Life history strategy of Lepraria borealis at an Antarctic inland site, Coal Nunatak. Lichenologist 42:339–346

    Article  Google Scholar 

  • Ettl H, Gärtner G (1995) Syllabus der Boden-, Luft-, und Flechtenalgen. – Gustav Fischer, Stuttgart, Jena, New York, 710 p

    Google Scholar 

  • Fernández-Mendoza F, Domaschke S, García MÁ, Jordan P, Martín M Printzen C (2011) Population structure of mycobionts and photobionts of the widespread lichen Cetraria aculeata. Mol Ecol 20:1208–1232

    Article  PubMed  Google Scholar 

  • Friedl T, Besendahl A, Pfeiffer P, Bhattacharya D (2000) The distribution of group I introns in lichen algae suggests that lichenization facilitates intron lateral transfer. Mol Phylogenet Evol 14:342–352

    Article  PubMed  CAS  Google Scholar 

  • Geitler L (1933) Beiträge zur Kenntnis der Flechtensymbiose I-III. Arch. Protistenk. 80:378–409

    Google Scholar 

  • Hale ME (1974) Bulbothrix, Parmelina, Relicina and Xanthoparmelia, four new genera in the Parmeliaceae. Phytologia 28:479–490

    Google Scholar 

  • Helms G (2003) Taxonomy and symbiosis in associations of Physciaceae and Trebouxia. Dissertation. University of Göttingen, Germany, 155 p

    Google Scholar 

  • Helms G, Friedl T, Rambold G, Mayrhofer H (2001) Identification of photobionts from the lichen family Physciaceae using algal-specific ITS rDNA sequencing. Lichenologist 33:73–86

    Article  Google Scholar 

  • Heylen O, Hermy M, Schrevens E (2005) Determinants of cryptogamic epiphyte diversity in a river valley (Flanders). Biol Conserv 126:371–382

    Article  Google Scholar 

  • Higuchi K, Ageta Y, Yasunari T, Inoue J (1982) Characteristics of precipitation during the monsoon season in high-mountain areas of the Nepal Himalaya. Hydrological Aspects of Alpine and High Mountain Areas (Proceedings of the Exeter Symposium, July 1982). IAHS Publ. no. 138: 2130

    Google Scholar 

  • Hildreth KC, Ahmadjian V (1981) A study Trebouxia and Pseudotrebouxia isolates from different lichens. Lichenologist 13:65–86

    Article  Google Scholar 

  • Hoffmann L (1989) Algae of terrestrial habitats. Botanical Review 55:77–105

    Article  Google Scholar 

  • Honegger R (1991) Functional aspects of the lichen symbiosis. Annu. Rev. Plant Mol Biol 42:553–578

    CAS  Google Scholar 

  • Ihda T, Nakano T (1995) Temperature characteristics of photobionts isolated from alpine lichens. Proc. NIPR Symp. Polar Biol 8:205–206

    Google Scholar 

  • IMD (Indian Meteorological Department) (1989) Climate of Uttar Pradesh, pp 372–375. Government of India Publication.

    Google Scholar 

  • Jairus K, Lõhmus A, Lõhmus P (2009) Lichen acclimatization on retention trees: a conservation physiology lesson. J App Ecol 46:930–936

    Article  Google Scholar 

  • John EA (1989) An assessment of the role of biotic interactions and dynamic processes in the organization of species in a saxicolous lichen community. Can J Botany 67:2025–2037

    Article  Google Scholar 

  • Kantvilas G, Messuti MI, Lumbsch HT (2005) Additions to the genus Mycobilimbia s. lat. from the Southern Hemisphere. Lichenologist 37:251259

    Article  Google Scholar 

  • Khare R, Rai H, Upreti DK, Gupta RK (2010) Soil Lichens as indicator of trampling in high altitude grassland of Garhwal, Western Himalaya, India. Fourth National Conference on Plants and Environmental Pollution 8–11 Dec. 2010, p 135–136

    Google Scholar 

  • Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the Fungi.—Trowbridge: Cromwell Press, 771 p

    Google Scholar 

  • Kumar M, Gupta RK, Bhatt AB, Tiwari SC (2011) Epiphytic cyanobacterial diversity in the sub-Himalayan belt of Garhwal region of Uttarakhand, India. Botanica Orientalis 8:77–89

    Google Scholar 

  • Lamb IM (1951) On the morphology, phylogeny, and taxonomy of the lichen genus Stereocaulon. Can J Botany 29:522–536

    Article  Google Scholar 

  • Lange OL, Belnap J, Reichenberger H (1998) Photosynthesis of the cyanobacterial soil-crust lichen Collema tenax from arid lands in southern Utah, USA: role of water content on light and temperature responses of CO2 exchange. Funct Ecol 12:195–202

    Article  Google Scholar 

  • Lange OL, Green A, Melzer B, Meyer A, Zellner H (2006) Water relations and CO2 exchange of the terrestrial lichen Teloschistes capensis in the Namib fog desert: Measurements during two seasons in the field and under controlled conditions. Flora- Morphol Distrib Funct Ecol Plant 201:268–280

    Article  Google Scholar 

  • Lohtander K, Oksanen I, Rikkinen J (2002) A phylogenetic study of Nephroma (lichen-forming Ascomycota). Mycol Res 106:777–787

    Google Scholar 

  • Loppi S, Pirintsos SA, Dominicis VD (1997) Analysis of the distribution of epiphytic lichens on Quercus pubescens along an altitudinal gradient in a mediterranean area (Tuscany, Central Italy). Israel J Plant Sci 45:53–58

    Article  Google Scholar 

  • Macedo MF, Miller AZ, Dionísio A, Saiz-Jimenez C (2009) Biodiversity of cyanobacteria and green algae on monuments in the Mediterranean Basin: an overview. Microbiology 155:3476–3490

    Article  PubMed  CAS  Google Scholar 

  • Mikhailyuk TI, Darienko TM (2011) Algae of terrestrial habitats in National Nature Park Hutsulshchyna. In: Protected areas of Ukraine. Flora, vol 9. Phytosociotsenter, Kyiv, p 142–151

    Google Scholar 

  • Moberg R, Nash TH III (1999) The genus Heterodermia in the Sonoran Desert area. Bryologist 102:1–14

    Google Scholar 

  • Moning C, Werth S, Dziock F, Bässler C, Bradtka J, Hothorn T, Müller J (2009) Lichen diversity in temperate montane forests is influenced by forest structure more than climate. Forest Ecol Manag 258:745–751

    Article  Google Scholar 

  • Morales MS, Villalba R, Grau HR, Paolini L (2004) Rainfall-controlled tree growth in high-elevations subtropical treelines. Ecology 85:3080–3089

    Article  Google Scholar 

  • Nash III TH, Ryan BD, Gries C, Bungartz F (eds) (2002) Lichen Flora of the Greater Sonoran Desert Region, Vol. 1. Tempe, Arizona: Lichens Unlimited, Arizona State University

    Google Scholar 

  • Nautiyal MC, Nautiyal BP, Prakash V (2001) Phenology and growth form distribution in an alpine pasture at Tungnath, Garhwal, Himalaya. Mt Res Dev 21:168–174

    Article  Google Scholar 

  • Negi H.R. (2000) On the patterns of abundance and diversity of macrolichens of Chopta–Tungnath in Garhwal Himalaya. J Bioscie 25:367–378

    Article  CAS  Google Scholar 

  • Nienow JA (1996) Ecology of subaerial algae. Nova Hedwigia 112:537–552

    Google Scholar 

  • O’Brien HE, Miadlikowska J, Lutzoni F (2005) Assessing host specialization in the symbiotic cyanobacteria associated with four closely related species of the lichen fungus Peltigera. Eur J Phycol 40:363–378

    Article  Google Scholar 

  • Opanowicz M, Grube M (2004) Photobiont genetic variation in Flavocetraria nivalis from Poland (Parmeliaceae, lichenized Ascomycota). Lichenologist 36:125–131

    Article  Google Scholar 

  • Otálora MAG, Martínez I, O’Brien H, Molina MC, Aragón G, Lutzoni F (2010) Multiple origins of high reciprocal symbiotic specificity at an intercontinental spatial scale among gelatinous lichens (Collemataceae, Lecanoromycetes). Mol Phylogenet Evol 56:1089–1095

    Article  Google Scholar 

  • Oxner AN (1974) Handbook of the lichens of the U.S.S.R. 2. Morphology, systematic and geographical distribution. Nauka, Leningrad, 284 p (in Russian)

    Google Scholar 

  • Piercey-Normore M, De Priest PT (2001) Algal switching among lichen symbioses. Am J Bot 88:1490–1498

    Article  PubMed  CAS  Google Scholar 

  • Pirintsos SA, Diamantopoulos J, Stamou GP (1995) Analysis of the distribution of epiphytic lichens within homogenous Fagus sylvatica stands along an altitudinal gradient (Mount Olympos, Greece). Vegetatio 116:33–40

    Google Scholar 

  • Rai H, Khare R, Gupta RK, Upreti DK (2011) Terricolous lichens as indicator of anthropogenic disturbances in a high altitude grassland in Garhwal (Western Himalaya), India. Bot Orient 8:16–23

    Google Scholar 

  • Rai H, Upreti DK, Gupta RK (2012) Diversity and distribution of terricolous lichens as indicator of habitat heterogeneity and grazing induced trampling in a temperate-alpine shrub and meadow. Biodivers Conserv 21:97–113

    Article  Google Scholar 

  • Rawat R (2010) Uttarakhand, Simple relief map. http://uttarakhand.org/wp-content/uploads/2010/08/map-relief.png. Accessed Feb 2013

    Google Scholar 

  • Renner B, Galloway DJ (1982) Phycosymbiodemes in Pseudocyphellaria in New Zealand. Mycotaxon 16:197–231

    Google Scholar 

  • Romeike J, Friedl T, Helms G, Ott S (2002) Genetic diversity of algal and fungal partners in four species of Umbilicaria along a transect of the Antarctic Peninsula. Mol Biol Evol 19:1209–1217

    Article  PubMed  CAS  Google Scholar 

  • Sand-Jensen K, Jespersen TS (2012) Tolerance of the widespread cyanobacterium Nostoc commune to extreme temperature variations (–269 to 105 °C), pH and salt stress. Oecologia 169(2):331–339

    Article  PubMed  Google Scholar 

  • Santesson R (1952) Foliicolous lichens I. A revision of the taxonomy of the obligately foliicolous, lichenized fungi. Symb Botanicae Upsalienses 12:1–590

    Google Scholar 

  • Scheidegger C, Clerc P (2002) Erdbewohnende Flechten der Schweiz, In: Rote Liste der gefährdeten Arten der Schweiz: Baum- und erdbewohnende Flechten, p 75–108

    Google Scholar 

  • Scheidegger C, Frey B, Zoller S (1995) Transplantation of symbiotic propagules and thallus fragments: methods for the conservation of threatened epiphytic lichen populations. Mitteilungen der Eidgenössischen Forschungsanstalt für Wald, Schnee und Landschaft 70:41–62

    Google Scholar 

  • Sharma CM, Baduni NP, Gairola S, Ghildiyal SK, Suyal S (2010) Effects of slope aspects on forest compositions, community structures and soil properties in natural temperate forests of Garhwal Himalaya. J Forest Res 21:331–337

    Article  CAS  Google Scholar 

  • Singh JS, Singh SP (1987) Forest vegetation of the Himalaya. Bot Rev 53:80–192

    Article  Google Scholar 

  • Skaloud P, Peksa O (2010) Evolutionary inferences based on ITS rDNA and actin sequences reveal extensive diversity of the common lichen alga Asterochloris (Trebouxiophyceae, Chlorophyta). Molecular Phylogenetics Evol 54:36–46

    Article  Google Scholar 

  • Sundriyal RC (1992) Structure, productivity and energy flow in an alpine grassland in the Garhwal Himalaya. J Veg Sci 3:15–20

    Article  Google Scholar 

  • Tarhanen S, Holopainen T, Oksanen J (1997) Ultrastructural changes and electrolyte leakage from ozone fumigated epiphytic lichens. Ann Botany 80:611†621

    Google Scholar 

  • Thüs H, Muggia L, Perez-Ortega S, Favero-Longo SE, Joneson S, O`Brien H, Nelsen MP, Duque-Thüs R, Grube M, Friedl T, Brodie J, Andrew CJ, Luecking R, Lutzoni F, Gueidan C (2011) Revisiting photobiont diversity in the lichen family Verrucariaceae (Ascomycota). Euro J Phycol 46:399–415

    Article  Google Scholar 

  • Tschermak-Woess E (1989) Developmental studies in trebouxioid algae and taxonomical consequences. Ibid. 164:161–195

    Google Scholar 

  • Uher B, Aboal M, Kovacik L (2005) Epilithic and chasmoendolithic phycoflora of monuments and buildings in South-Eastern Spain. Cryptogamie, Algol. 24:275–358

    Google Scholar 

  • Upreti DK (1998) Diversity of lichens in India. In: Agarwal SK, Kaushik JP, Kaul KK, Jain AK (eds) Perspectives in Environment, APH Publishing Corporation, New Delhi, India. p 71–79

    Google Scholar 

  • Vishwakarma MP, Bhatt RP, Joshi S (2012) Macrofungal diversity in moist temperate forests of Garhwal Himalaya. Indian J Sci Technol 5:1928–1932

    Google Scholar 

  • Voytsekhovich A, Kondratyuk S, Beck A (in press) Lichen photobionts of the rocky outcrops of Karadag Nature Reserve (South-East Crimea, Ukraine). J Phycol (in press).

    Google Scholar 

  • Voytsekhovich AA (2013) Lichen photobionts: the origin, diversity and relationships with mycobiont.—Lambert Acdemic Publishing, Saarbrücken, 102 p IBSN: 978-3-659-31872-6. (In Russian)

    Google Scholar 

  • Voytsekhovich AA, Kashevarov GP (2010) Pigment content of photosynthetic apparatus of green algae (Chlorophyta)—the photobionts of lichens. Int J Algae 12:271–281

    Article  Google Scholar 

  • Wang K, Sun J, Cheng G, Jiang H (2011) Effect of altitude on surface air temperature across the Qinghai-Tibet Plateau. J Mt Sci 8:808–816

    Article  Google Scholar 

  • Werth S, Tømmervik H, Elvebakk A (2005) Epiphytic macrolichen communities along regional gradients in northern Norway. J Veg Sci 16:199–208

    Article  Google Scholar 

  • Wetmore CM (1960) The lichen genus Nephroma in North and Middle America. Publications of the Museum. Michigan State University. Biol Ser 1:369–380

    CAS  Google Scholar 

  • Will-Wolf S, Geiser LH, Neitlich P, Reis AH (2006) Forest lichens communities and environment—How consistent are relationships across scales? J Veg Sci 17:171–184

    Google Scholar 

  • Zeitler I (1954) Untersuchungen über die Morphologie, Entwicklungsgeschichte und Systematik von Flechtengonidien. Österreichische botanische Zeitschrift 101:453–483

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Voytsekhovich Anna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Anna, V., Dymytrova, L., Rai, H., Upreti, D. (2014). Photobiont Diversity of Soil Crust Lichens Along Substrate Ecology and Altitudinal Gradients in Himalayas: A Case Study from Garhwal Himalaya. In: Rai, H., Upreti, D. (eds) Terricolous Lichens in India. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8736-4_5

Download citation

Publish with us

Policies and ethics