Skip to main content

Mobilized Integrons: Team Players in the Spread of Antibiotic Resistance Genes

  • Chapter
  • First Online:
Lateral Gene Transfer in Evolution

Abstract

Integrons possess a site-specific recombination system and comprise a family of elements that are broadly distributed amongst the Proteobacteria. The units of capture into these elements are gene cassettes, which normally comprise of only a single gene along with an attachment site recognized by the recombination system. The class 1 integron has at least two features that distinguishes it from most other members of the integron family of integrase elements. The first of these is that they are located on mobile elements as opposed to being fixed in the chromosome and the second is that most of the associated gene cassettes include genes that encode antibiotic resistance. The linkage of the class 1 integron to mobile elements was an important step since it has meant that diverse molecular processes act cooperatively to disseminate resistance genes in Gram-negative bacteria. The selection for resistance in the antibiotic era has now led to an enormous diversity of elements that in many cases has resulted in conjugation, transposition, and site-specific recombination processes combining to spread large clusters of resistance genes. All these processes existed in nature prior to the antibiotic era but the level and extent of cooperation did not. Here we discuss how some of these complex class 1-associated mobile resistance regions evolved and their ramifications for the management of the antibiotic resistance problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lederberg J, Tatum EL (1946) Gene recombination in Escherichia coli. Nature 158:558

    PubMed  CAS  Google Scholar 

  2. Hughes VM, Datta N (1983) Conjugative plasmids in bacteria of the ‘pre-antibiotic’ era. Nature 302:725–726

    PubMed  CAS  Google Scholar 

  3. Gillings MR, Stokes HW (2012) Are humans increasing bacterial evolvability? Trends Ecol Evol 27:346–352

    PubMed  Google Scholar 

  4. Hall RM, Brookes DE, Stokes HW (1991) Site-specific insertion of genes into integrons: role of the 59-base element and determination of the recombination cross-over point. Mol Microbiol 5:1941–1959

    PubMed  CAS  Google Scholar 

  5. Martinez E, de la Cruz F (1988) Transposon Tn21 encodes a RecA-independent site-specific integration system. Mol Gen Genet 211:320–325

    PubMed  CAS  Google Scholar 

  6. Recchia GD, Hall RM (1995) Gene cassettes: a new class of mobile element. Microbiology 141:3015–3027

    PubMed  CAS  Google Scholar 

  7. Stokes HW, Hall RM (1989) A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons. Mol Microbiol 3:1669–1683

    PubMed  CAS  Google Scholar 

  8. Partridge SR, Tsafnat G, Coiera E, Iredell JR (2009) Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiol Rev 33:757–784

    PubMed  CAS  Google Scholar 

  9. Holzel CS, Harms KS, Bauer J, Bauer-Unkauf I, Hormansdorfer S, Kampf P et al (2012) Diversity of antimicrobial resistance genes and class-1-integrons in phylogenetically related porcine and human Escherichia coli. Vet Microbiol 160:403–412

    PubMed  Google Scholar 

  10. Maguire AJ, Brown DF, Gray JJ, Desselberger U (2001) Rapid screening technique for class 1 integrons in Enterobacteriaceae and nonfermenting gram-negative bacteria and its use in molecular epidemiology. Antimicrob Agents Chemother 45:1022–1029

    PubMed  CAS  Google Scholar 

  11. Xu Z, Li L, Shi L, Shirtliff ME (2011) Class 1 integron in staphylococci. Mol Biol Rep 38:5261–5279

    PubMed  CAS  Google Scholar 

  12. Brown H, Stokes H, Hall R (1996) The integrons In0, In2, and In5 are defective transposon derivatives. J Bacteriol 178:4429–4437

    PubMed  CAS  Google Scholar 

  13. Kholodii GY, Mindlin SZ, Bass IA, Yurieva OV, Minakhina SV, Nikiforov VG (1995) Four genes, two ends, and a res region are involved in transposition of Tn5053: a paradigm for a novel family of transposons carrying either a mer operon or an integron. Mol Microbiol 17:1189–1200

    PubMed  CAS  Google Scholar 

  14. Boucher Y, Labbate M, Koenig JE, Stokes HW (2007) Integrons: mobilizable platforms that promote genetic diversity in bacteria. Trends Microbiol 15:301–309

    PubMed  CAS  Google Scholar 

  15. Mazel D (2006) Integrons: agents of bacterial evolution. Nat Rev Micro 4:608–620

    CAS  Google Scholar 

  16. Hansson K, Sundstrom L, Pelletier A, Roy PH (2002) IntI2 integron integrase in Tn7. J Bacteriol 184:1712–1721

    PubMed  CAS  Google Scholar 

  17. Solberg OD, Ajiboye RM, Riley LW (2006) Origin of Class 1 and 2 Integrons and gene cassettes in a population-based sample of uropathogenic Escherichia coli. J Clin Microbiol 44:1347–1351

    PubMed  CAS  Google Scholar 

  18. Fallah F, Karimi A, Goudarzi M, Shiva F, Navidinia M, Hadipour Jahromi M et al (2012) Jul 20) Determination of integron frequency by a polymerase chain reaction-restriction fragment length polymorphism method in multidrug-resistant Escherichia coli, which causes urinary tract infections. Microb Drug Resist 18(6):546–549

    PubMed  CAS  Google Scholar 

  19. Mokracka J, Koczura R, Kaznowski A (2012) Multiresistant Enterobacteriaceae with class 1 and class 2 integrons in a municipal wastewater treatment plant. Water Res 46:3353–3363

    PubMed  CAS  Google Scholar 

  20. Marquez C, Labbate M, Ingold AJ, Roy Chowdhury. P, Ramirez MS, Centron D et al (2008) Recovery of a functional class 2 integron from an Escherichia coli strain mediating a urinary tract infection. Antimicrob Agents Chemother 52:4153–4154

    PubMed  CAS  Google Scholar 

  21. Barlow RS, Gobius KS (2006) Diverse class 2 integrons in bacteria from beef cattle sources. J Antimicrob Chemother 58:1133–1138

    PubMed  CAS  Google Scholar 

  22. Arakawa Y, Murakami M, Suzuki K, Ito H, Wacharotayankun R, Ohsuka S et al (1995) A novel integron-like element carrying the metallo-β-lactamase gene blaIMP. Antimicrob Agents Chemother 39:1612–1615

    PubMed  CAS  Google Scholar 

  23. Collis CM, Kim M-J, Partridge SR, Stokes HW, Hall RM (2002) Characterization of the class 3 integron and the site-specific recombination system it determines. J Bacteriol 184:3017–3026

    PubMed  CAS  Google Scholar 

  24. Correia M, Boavida F, Grosso F, Salgado MJ, Lito LM, Cristino JM et al (2003) Molecular characterization of a new class 3 integron in Klebsiella pneumoniae. Antimicrob Agents Chemother 47:2838–2843

    PubMed  CAS  Google Scholar 

  25. Shibata N, Doi Y, Yamane K, Yagi T, Kurokawa H, Shibayama K et al (2003) PCR typing of genetic determinants for metallo-β-lactamases and integrases carried by gram-negative bacteria isolated in Japan, with focus on the class 3 integron. J Clin Microbiol 41:5407–5413

    PubMed  CAS  Google Scholar 

  26. Xu H, Davies J, Miao V (2007) Molecular characterization of class 3 integrons from Delftia spp. J Bacteriol 189:6276–6283

    PubMed  CAS  Google Scholar 

  27. Cambray G, Guerout AM, Mazel D (2010) Integrons. Annu Rev Genet 44:141–166

    PubMed  CAS  Google Scholar 

  28. Gillings M, Boucher Y, Labbate M, Holmes A, Krishnan S, Holley M et al (2008) The evolution of class 1 integrons and the rise of antibiotic resistance. J Bacteriol 190:5095–510044141–166

    PubMed  CAS  Google Scholar 

  29. Hall RM, Brown HJ, Brookes DE, Stokes HW (1994) Integrons found in different locations have identical 5′2 ends but variable 3′2 ends. J Bacteriol 176:6286–6294

    PubMed  CAS  Google Scholar 

  30. Partridge SR, Hall RM (2004) Complex multiple antibiotic and mercury resistance region derived from the r-det of NR1 (R100). Antimicrob Agents Chemother 48:4250–4255

    PubMed  CAS  Google Scholar 

  31. Partridge SR, Recchia GD, Stokes HW, Hall RM (2001) Family of class 1 integrons related to In4 from Tn1696. Antimicrob Agents Chemother 45:3014–3020

    PubMed  CAS  Google Scholar 

  32. Partridge SR, Brown HJ, Hall RM (2002) Characterization and movement of the class 1 integron known as Tn2521 and Tn1405. Antimicrob Agents Chemother 46:1288–1294

    PubMed  CAS  Google Scholar 

  33. Levesque C, Piche L, Larose C, Roy PH (1995) PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrob Agents Chemother 39:185–191

    PubMed  CAS  Google Scholar 

  34. Radstrom P, Skold O, Swedberg G, Flensburg J, Roy PH, Sundstrom L (1994) Transposon Tn5090 of plasmid R751, which carries an integron, is related to Tn7, Mu, and the retroelements. J Bacteriol 176:3257–3268

    PubMed  CAS  Google Scholar 

  35. Betteridge T, Partridge SR, Iredell JR, Stokes HW (2011) Genetic context and structural diversity of class 1 integrons from human commensal bacteria in a hospital intensive care unit. Antimicrob Agents Chemother 55:3939–3943

    PubMed  CAS  Google Scholar 

  36. Dawes FE, Kuzevski A, Bettelheim KA, Hornitzky MA, Djordjevic SP, Walker MJ (2012) Distribution of class 1 integrons with IS26-mediated deletions in their 3′-conserved segments in Escherichia coli of human and animal origin. PLoS One 5:e12754

    Google Scholar 

  37. Tato M, Coque TM, Baquero F, Canton R (2012) Dispersal of carbapenemase blaVIM-1 gene associated with different Tn402 variants, mercury transposons, and conjugative plasmids in Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother 54:320–327

    Google Scholar 

  38. Toleman MA, Vinodh H, Sekar U, Kamat V, Walsh TR (2007) blaVIM-2-Harboring integrons isolated in India, Russia, and the United States arise from an ancestral class 1 integron predating the formation of the 3-conserved sequence. Antimicrob Agents Chemother 51:2636–2638

    PubMed  CAS  Google Scholar 

  39. Gillings MR, Labbate M, Sajjad A, Giguere NJ, Holley MP, Stokes HW (2009) Mobilization of a Tn402-like class 1 integron with a novel cassette array via flanking miniature inverted-repeat transposable element-like structures. Appl Environ Microbiol 75:6002–6004

    PubMed  CAS  Google Scholar 

  40. Marquez C, Labbate M, Raymondo C, Fernandez J, Gestal AM, Holley M et al (2008) Urinary tract infections in a South American population: dynamic spread of class 1 integrons and multidrug resistance by homologous and site-specific recombination. J Clin Microbiol 46:3417–3425

    PubMed  CAS  Google Scholar 

  41. Partridge SR, Brown HJ, Stokes HW, Hall RM (2001) Transposons Tn1696 and Tn21 and their integrons In4 and In2 have independent origins. Antimicrob Agents Chemother 45:1263–1270

    PubMed  CAS  Google Scholar 

  42. Toleman MA, Walsh TR (2010) ISCR elements are key players in IncA/C plasmid evolution. Antimicrob Agents Chemother 54:3534

    PubMed  CAS  Google Scholar 

  43. Stokes HW, Nesbo CL, Holley M, Bahl MI, Gillings MR, Boucher Y (2006) Class 1 integrons potentially predating the association with Tn402-Like transposition genes are present in a sediment microbial community. J Bacteriol 188:5722–5730

    PubMed  CAS  Google Scholar 

  44. Gillings MR, Xuejun D, Hardwick SA, Holley MP, Stokes HW (2009) Gene cassettes encoding resistance to quaternary ammonium compounds: a role in the origin of clinical class 1 integrons? ISME J 3:209–215

    PubMed  CAS  Google Scholar 

  45. Liebert CA, Hall RM, Summers AO (1999) Transposon Tn21, Flagship of the floating genome. Microbiol Mol Biol Rev 63:507–522

    PubMed  CAS  Google Scholar 

  46. Petrova M, Gorlenko Z, Mindlin S (2011) Tn5045, a novel integron-containing antibiotic and chromate resistance transposon isolated from a permafrost bacterium. Res Microbiol 162:337–345

    PubMed  CAS  Google Scholar 

  47. Allmeier H, Cresnar B, Greck M, Schmitt R (1992) Complete nucleotide sequence of Tn1721: gene organization and a novel gene product with features of a chemotaxis protein. Gene 111:11–20

    PubMed  CAS  Google Scholar 

  48. Poirel L, Decousser JW, Nordmann P (2003) Insertion sequence ISEcp1B is involved in expression and mobilization of a bla(CTX-M) beta-lactamase gene. Antimicrob Agents Chemother 47:2938–2945

    PubMed  CAS  Google Scholar 

  49. Yamamoto T (1989) Organization of complex transposon Tn2610 carrying two copies of tnpA and tnpR. Antimicrob Agents Chemother 33:746–750

    PubMed  CAS  Google Scholar 

  50. Rogowsky P, Schmitt R (1984) Resolution of a hybrid cointegrate between transposons Tn501 and Tn1721 defines the recombination site. Mol Gen Genet 193:162–166

    PubMed  CAS  Google Scholar 

  51. Zong Z, Yu R, Wang X, Lu X (2011) blaCTX-M-65 is carried by a Tn1722-like element on an IncN conjugative plasmid of ST131 Escherichia coli. J Medical Microbiol 60:435–441

    CAS  Google Scholar 

  52. Labbate M, Roy Chowdhury P, Stokes HW (2008) A class 1 integron present in a human commensal has a hybrid transposition module compared to Tn402: evidence of interaction with mobile DNA from natural environments. J Bacteriol 190:5318–5327

    PubMed  CAS  Google Scholar 

  53. Juan C, Zamorano L, Mena A, Alberti S, Perez JL, Oliver A (2010) Metallo-β-lactamase-producing Pseudomonas putida as a reservoir of multidrug resistance elements that can be transferred to successful Pseudomonas aeruginosa clones. J Antimicrob Chemother 65:474–478

    PubMed  CAS  Google Scholar 

  54. Marchiaro P, Viale AM, Ballerini V, Rossignol G, Vila AJ, Limansky A (2010) First report of a Tn402-like class 1 integron carrying blaVIM-2 in Pseudomonas putida from Argentina. J Infect Dev Ctries 4:412–416

    PubMed  Google Scholar 

  55. Lagatolla C, Edalucci E, Dolzani L, Riccio ML, De Luca F, Medessi E et al (2006) Molecular evolution of metallo-β-lactamase-producing Pseudomonas aeruginosa in a nosocomial setting of high-level endemicity. J Clin Microbiol 44:2348–2353

    PubMed  CAS  Google Scholar 

  56. Minakhina S, Kholodii G, Mindlin S, Yurieva O, Nikiforov V (1999) Tn5053 family transposons are res site hunters sensing plasmidal res sites occupied by cognate resolvases. Mol Microbiol 33:1059–1068

    PubMed  CAS  Google Scholar 

  57. Roy Chowdhury P, Merlino J, Labbate M, Cheong EY, Gottlieb T, Stokes HW (2009) Tn6060, a transposon from a genomic island in a Pseudomonas aeruginosa clinical isolate that includes two class 1 integrons. Antimicrob Agents Chemother 53:5294–5296

    PubMed  Google Scholar 

  58. Stokes HW, Elbourne LD, Hall RM (2007) Tn1403, a multiple-antibiotic resistance transposon made up of three distinct transposons. Antimicrob Agents Chemother 51:1827–1829

    PubMed  CAS  Google Scholar 

  59. Martinez E, Marquez C, Ingold A, Merlino J, Djordjevic SP, Stokes HW et al (2012) Diverse mobilized class 1 integrons are common in the chromosomes of pathogenic Pseudomonas aeruginosa clinical isolates. Antimicrob. Agents Chemother 56:2169–2172

    CAS  Google Scholar 

  60. Roy Chowdhury P, Ingold A, Vanegas N, Martànez E, Merlino J, Merkier AK et al (2011) Dissemination of multiple drug resistance genes by class 1 integrons in Klebsiella pneumoniae isolates from four countries: a comparative study. Antimicrob Agents Chemother 55:3140–3149

    PubMed  Google Scholar 

  61. Lartigue MF, Poirel L, Aubert D, Nordmann P (2006) In vitro analysis of ISEcp1B-mediated mobilization of naturally occurring beta-lactamase gene blaCTX-M of Kluyvera ascorbata. Antimicrob Agents Chemother 50:1282–1286

    PubMed  CAS  Google Scholar 

  62. Olson AB, Silverman M, Boyd DA, McGeer A, Willey BM, Pong-Porter V et al (2005) Identification of a progenitor of the CTX-M-9 group of extended-spectrum β-lactamases from Kluyvera georgiana isolated in Guyana. Antimicrob Agents Chemother 49:2112–2115

    PubMed  CAS  Google Scholar 

  63. Toleman MA, Bennett PM, Walsh TR (2006) ISCR elements: novel gene-capturing systems of the 21st century? Microbiol Mol Biol Rev 70:296–316

    PubMed  CAS  Google Scholar 

  64. Stokes HW, Tomaras C, Parsons Y, Hall RM (1993) The partial 3′-conserved segment duplications in the integrons In6 from pSa and In7 from pDGO100 have a common origin. Plasmid 30:39–50

    PubMed  CAS  Google Scholar 

  65. Szczepanowski R, Braun S, Riedel V, Schneiker S, Krahn I, Puhler A et al (2005) The 120 592 bp IncF plasmid pRSB107 isolated from a sewage-treatment plant encodes nine different antibiotic-resistance determinants, two iron-acquisition systems and other putative virulence-associated functions. Microbiology 151:1095–1111

    PubMed  CAS  Google Scholar 

  66. Daly M, Villa L, Pezzella C, Fanning S, Carattoli A (2005) Comparison of multidrug resistance gene regions between two geographically unrelated Salmonella serotypes. J Antimicrob Chemother 55:558–561

    PubMed  CAS  Google Scholar 

  67. Doublet B, Praud K, Weill FX, Cloeckaert A (2009) Association of IS26-composite transposons and complex In4-type integrons generates novel multidrug resistance loci in Salmonella genomic island 1. J Antimicrob Chemother 63:282–289

    PubMed  CAS  Google Scholar 

  68. Espedido BA, Partridge SR, Iredell JR (2008) bla(IMP-4) in different genetic contexts in Enterobacteriaceae isolates from Australia. Antimicrob Agents Chemother 52:2984–2987

    PubMed  CAS  Google Scholar 

  69. Domingues S, Nielsen KM, da Silva GJ (2011) The blaIMP-5-carrying integron in a clinical Acinetobacter baumannii strain is flanked by miniature inverted-repeat transposable elements (MITEs). J Antimicrob Chemother 66:2667–2668

    PubMed  CAS  Google Scholar 

  70. Delihas N (2008) Small mobile sequences in bacteria display diverse structure/function motifs. Mol Microbiol 67:475–481

    PubMed  CAS  Google Scholar 

  71. Delihas N (2007) Enterobacterial small mobile sequences carry open reading frames and are found intragenically-evolutionary implications for formation of new peptides. Gene Regul Syst Bio 1:191–205

    PubMed  Google Scholar 

  72. Venturini C, Beatson SA, Djordjevic SP, Walker MJ (2010) Multiple antibiotic resistance gene recruitment onto the enterohemorrhagic Escherichia coli virulence plasmid. FASEB J 24:1160–1166

    PubMed  CAS  Google Scholar 

  73. Pan JC, Ye R, Wang HQ, Xiang HQ, Zhang W, Yu XF et al (2008) Vibrio cholerae O139 multiple-drug resistance mediated by Yersinia pestis pIP1202-like conjugative plasmids. Antimicrob Agents Chemother 52:3829–3836

    PubMed  CAS  Google Scholar 

  74. Cain AK, Hall RM (2012) Evolution of a multiple antibiotic resistance region in IncHI1 plasmids: reshaping resistance regions in situ. J Antimicrob Chemother 67(12):2848–2853

    PubMed  CAS  Google Scholar 

  75. Cain AK, Hall RM (2012) Evolution of IncHI2 plasmids via acquisition of transposons carrying antibiotic resistance determinants. J Antimicrob Chemother 67:1121–1127

    PubMed  CAS  Google Scholar 

  76. Partridge SR, Ellem JA, Tetu SG, Zong Z, Paulsen IT, Iredell JR (2011) Complete sequence of pJIE143, a pir-type plasmid carrying ISEcp1-blaCTX-M-15 from an Escherichia coli ST131 isolate. Antimicrob Agents Chemother 55:5933–5935

    PubMed  CAS  Google Scholar 

  77. Partridge SR, Paulsen IT, Iredell JR (2012) pJIE137 carrying blaCTX-M-62 is closely related to p271A carrying blaNDM-1. Antimicrob Agents Chemother 56:2166–2168

    PubMed  CAS  Google Scholar 

  78. Chen YT, Liao TL, Liu YM, Lauderdale TL, Yan JJ, Tsai SF (2009) Mobilization of qnrB2 and ISCR1 in plasmids. Antimicrob Agents Chemother 53:1235–1237

    PubMed  CAS  Google Scholar 

  79. Haines AS, Jones K, Batt SM, Kosheleva IA, Thomas CM (2007) Sequence of plasmid pBS228 and reconstruction of the IncP-1alpha phylogeny. Plasmid 58:76–83

    PubMed  CAS  Google Scholar 

  80. Bashir A, Klammer AA, Robins WP, Chin CS, Webster D, Paxinos E et al (2012) A hybrid approach for the automated finishing of bacterial genomes. Nat Biotechnol 30(7):701–707

    PubMed  CAS  Google Scholar 

  81. Hacker J, Kaper JB (2000) Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol 54:641–679

    PubMed  CAS  Google Scholar 

  82. Dobrindt U, Hochhut B, Hentschel U, Hacker J (2004) Genomic islands in pathogenic and environmental microorganisms. Nat Rev Micro 2:414–424

    CAS  Google Scholar 

  83. Fournier P-E, Vallenet D, Barbe V, Audic S, Ogata H, Poirel L et al (2006) Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLoS Genet 2:e7

    PubMed  Google Scholar 

  84. Lescat M, Calteau A, Hoede C, Barbe V, Touchon M, Rocha E et al (2009) A module located at a chromosomal integration hot spot is responsible for the multidrug resistance of a reference strain from Escherichia coli clonal group A. Antimicrob Agents Chemother 53:2283–2288

    PubMed  CAS  Google Scholar 

  85. Klockgether J, Reva O, Larbig K, Tümmler B (2004) Sequence analysis of the mobile genome island pKLC102 of Pseudomonas aeruginosa. C J Bacteriol 186:518–534

    CAS  Google Scholar 

  86. Boyd D, Cloeckaert A, Chaslus-Dancla E, Mulvey MR (2002) Characterization of variant Salmonella genomic island 1 multidrug resistance regions from serovars Typhimurium DT104 and Agona. Antimicrob Agents Chemother 46:1714–1722

    PubMed  CAS  Google Scholar 

  87. Klockgether J, Cramer N, Wiehlmann L, Davenport CF, Tummler B (2011) Pseudomonas aeruginosa genomic structure and diversity. Front Microbiol 2:1–18

    Google Scholar 

  88. Klockgether J, Wurdemann D, Reva O, Wiehlmann L, Tummler B (2006) Diversity of the abundant pKLC102/PAGI-2 family of genomic islands in Pseudomonas aeruginosa. J Bacteriol 6:2443–2459

    Google Scholar 

  89. Threlfall EJ, Ward LR, Frost JA, Willshaw GA (2000) The emergence and spread of antibiotic resistance in food-borne bacteria. Int J Food Microbiol 62:1–5

    PubMed  CAS  Google Scholar 

  90. Zhao S, Blickenstaff K, Bodeis-Jones S, Gaines SA, Tong E, McDermott PF (2012) Comparison of the prevalences and antimicrobial resistances of Escherichia coli isolates from different retail meats in the United States, 2002 to 2008. Appl Environ Microbiol 78:1701–1707

    PubMed  CAS  Google Scholar 

  91. Schwaiger K, Huther S, Holzel C, Kampf P, Bauer J (2012) Prevalence of antibiotic-resistant Enterobacteriaceae isolated from chicken and pork meat purchased at the slaughterhouse and at retail in Bavaria, Germany. Int J Food Microbiol 154:206–211

    PubMed  Google Scholar 

  92. Buchholz U, Bernard H, Werber D, Bohmer MM, Remschmidt C, Wilking H et al (2011) German outbreak of Escherichia coli O104:H4 associated with sprouts. N Engl J Med 365:1763–1770

    PubMed  CAS  Google Scholar 

  93. Mellmann A, Harmsen D, Cummings CA, Zentz EB, Leopold SR, Rico A et al (2011) Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology. PLoS One 6:e22751

    PubMed  CAS  Google Scholar 

  94. Bielaszewska M, Mellmann A, Zhang W, Kock R, Fruth A, Bauwens A et al (2011) Characterisation of the Escherichia coli strain associated with an outbreak of haemolytic uraemic syndrome in Germany, 2011: a microbiological study. Lancet Infect Dis 11:671–676

    PubMed  CAS  Google Scholar 

  95. Leverstein-van Hall MA, M Blok HE, T Donders AR, Paauw A, Fluit AC, Verhoef J (2003) Multidrug resistance among Enterobacteriaceae is strongly associated with the presence of integrons and is independent of species or isolate origin. J Infect Dis 187:251–259

    PubMed  CAS  Google Scholar 

  96. Doublet B, Boyd D, Mulvey MR, Cloeckaert A (2005) The Salmonella genomic island 1 is an integrative mobilizable element. Mol Microbiol 55:1911–1924

    PubMed  CAS  Google Scholar 

  97. Boyd D, Peters GA, Cloeckaert A, Boumedine KS, Chaslus-Dancla E, Imberechts H et al (2001) Complete nucleotide sequence of a 43-kilobase genomic island associated with the multidrug resistance region of Salmonella enterica serovar Typhimurium DT104 and its identification in phage type DT120 and serovar Agona. J Bacteriol 183:5725–5732

    PubMed  CAS  Google Scholar 

  98. Mulvey MR, Boyd DA, Olson AB, Doublet B, Cloeckaert A (2006) The genetics of Salmonella genomic island 1. Microbes Infect 8:1915–1922

    PubMed  CAS  Google Scholar 

  99. Threlfall EJ (2000) Epidemic Salmonella typhimurium DT 104–a truly international multiresistant clone. J Antimicrob Chemother 46:7–10

    PubMed  CAS  Google Scholar 

  100. Levings RS, Lightfoot D, Partridge SR, Hall RM, Djordjevic SP (2005) The genomic island SGI1, containing the multiple antibiotic resistance region of Salmonella enterica serovar Typhimurium DT104 or variants of it, is widely distributed in other S. enterica serovars. J Bacteriol 187:4401–4409

    PubMed  CAS  Google Scholar 

  101. Evans S, Davies R (1996) Case control study of multiple-resistant Salmonella typhimurium DT104 infection of cattle in Great Britain. Vet Rec 139:557–558

    PubMed  CAS  Google Scholar 

  102. Wall PG, Morgan D, Lamden K, Ryan M, Griffin M, Threlfall EJ et al (1994) A case control study of infection with an epidemic strain of multiresistant Salmonella typhimurium DT104 in England and Wales. Commun Dis Rep CDR Rev 4:R130–5

    PubMed  CAS  Google Scholar 

  103. Kiss J, Nagy B, Olasz F (2012) Stability, entrapment and variant formation of Salmonella genomic island 1. PLoS One 7:e32497

    PubMed  CAS  Google Scholar 

  104. Le Hello S, Weill FX, Guibert V, Praud K, Cloeckaert A, Doublet B (2012) Early multidrug-resistant Salmonella enterica Serovar Kentucky ST198 from Southeast Asia harbor Salmonella genomic island 1-J variants with a novel insertion sequence. Antimicrob Agents Chemother 56(10):5096–5102

    PubMed  CAS  Google Scholar 

  105. Djordjevic SP, Cain AK, Evershed NJ, Falconer L, Levings RS, Lightfoot D et al (2009) Emergence and evolution of multiply antibiotic-resistant Salmonella enterica serovar Paratyphi B D-tartrate-utilizing strains containing SGI1. Antimicrob Agents Chemother 53:2319–2326

    PubMed  CAS  Google Scholar 

  106. Levings RS, Lightfoot D, Hall RM, Djordjevic SP (2006) Aquariums as reservoirs for multidrug-resistant Salmonella Paratyphi B. Emerg Infect Dis 12:507–510

    PubMed  CAS  Google Scholar 

  107. Le Hello S, Hendriksen RS, Doublet B, Fisher I, Nielsen EM, Whichard JM et al (2011) International spread of an epidemic population of Salmonella enterica serotype Kentucky ST198 resistant to ciprofloxacin. J Infect Dis 204:675–684

    PubMed  CAS  Google Scholar 

  108. Levings RS, Partridge SR, Djordjevic SP, Hall RM (2007) SGI1-K, a variant of the SGI1 genomic island carrying a mercury resistance region, in Salmonella enterica serovar Kentucky. Antimicrob Agents Chemother 51:317–323

    PubMed  CAS  Google Scholar 

  109. Doublet B, Butaye P, Imberechts H, Boyd D, Mulvey MR, Chaslus-Dancla E et al (2004) Salmonella genomic island 1 multidrug resistance gene clusters in Salmonella enterica serovar Agona isolated in Belgium in 1992 to 2002. Antimicrob Agents Chemother 48:2510–2517

    PubMed  CAS  Google Scholar 

  110. Doublet B, Butaye P, Imberechts H, Collard JM, Chaslus-Dancla E, Cloeckaert A (2004) Salmonella agona harboring genomic island 1-A. Emerg Infect Dis 10:756–758

    PubMed  Google Scholar 

  111. Cain AK, Liu X, Djordjevic SP, Hall RM (2010) Transposons related to Tn1696 in IncHI2 plasmids in multiply antibiotic resistant Salmonella enterica serovar Typhimurium from Australian animals. Microb Drug Resist 16:197–202

    PubMed  CAS  Google Scholar 

  112. Johnson TJ, Lang KS (2012) IncA/C plasmids: an emerging threat to human and animal health? Mob Genet Elements 2:55–58

    PubMed  Google Scholar 

  113. Fricke WF, Welch TJ, McDermott PF, Mammel MK, LeClerc JE, White DG et al (2009) Comparative genomics of the IncA/C multidrug resistance plasmid family. J Bacteriol 191:4750–4757

    PubMed  CAS  Google Scholar 

  114. Lindsey RL, Fedorka-Cray PJ, Frye JG, Meinersmann RJ (2009) Inc A/C plasmids are prevalent in multidrug-resistant Salmonella enterica isolates. Appl Environ Microbiol 75:1908–1915

    PubMed  CAS  Google Scholar 

  115. Allen KJ, Poppe C (2002) Occurrence and characterization of resistance to extended-spectrum cephalosporins mediated by beta-lactamase CMY-2 in Salmonella isolated from food-producing animals in Canada. Can J Vet Res 66:137–144

    PubMed  CAS  Google Scholar 

  116. Garcia P, Guerra B, Bances M, Mendoza MC, Rodicio MR (2011) IncA/C plasmids mediate antimicrobial resistance linked to virulence genes in the Spanish clone of the emerging Salmonella enterica serotype 4,[5],12:i. J Antimicrob Chemother 66:543–549

    PubMed  CAS  Google Scholar 

  117. Doublet B, Boyd D, Douard G, Praud K, Cloeckaert A, Mulvey MR (2012) Complete nucleotide sequence of the multidrug resistance IncA/C plasmid pR55 from Klebsiella pneumoniae isolated in 1969. J Antimicrob Chemother 67(10):2354–2360

    PubMed  CAS  Google Scholar 

  118. Saidani M, Hammami S, Kammoun A, Slim A, Boutiba-Ben Boubaker I (2012) Emergence of carbapenem resistant Enterobacteriaceae producing OXA-48 carbapenemase in Tunisia. J Med Microbiol 61(Pt 12):1746–1749

    Google Scholar 

  119. Galimand M, Guiyoule A, Gerbaud G, Rasoamanana B, Chanteau S, Carniel E et al (1997) Multidrug resistance in Yersinia pestis mediated by a transferable plasmid. N Engl J Med 337:677–680

    PubMed  CAS  Google Scholar 

  120. Pan JC, Ye R, Wang HQ, Xiang HQ, Zhang W, Yu XF et al (2008) Vibrio cholerae O139 multiple-drug resistance mediated by Yersinia pestis pIP1202-like conjugative plasmids. Antimicrob Agents Chemother 52:3829–3836

    PubMed  CAS  Google Scholar 

  121. Kim MJ, Hirono I, Kurokawa K, Maki T, Hawke J, Kondo H et al (2008) Complete DNA sequence and analysis of the transferable multiple-drug resistance plasmids (R Plasmids) from Photobacterium damselae subsp. piscicida isolates collected in Japan and the United States. Antimicrob Agents Chemother 52:606–611

    PubMed  CAS  Google Scholar 

  122. Reith ME, Singh RK, Curtis B, Boyd JM, Bouevitch A, Kimball J et al (2008) The genome of Aeromonas salmonicida subsp. salmonicida A449: insights into the evolution of a fish pathogen. BMC Genomics 9:427

    PubMed  Google Scholar 

  123. Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R et al (2010) Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 10:597–602

    PubMed  CAS  Google Scholar 

  124. Hopkins KL, Liebana E, Villa L, Batchelor M, Threlfall EJ, Carattoli A (2006) Replicon typing of plasmids carrying CTX-M or CMY beta-lactamases circulating among Salmonella and Escherichia coli isolates. Antimicrob Agents Chemother 50:3203–3206

    PubMed  CAS  Google Scholar 

  125. Carattoli A, Miriagou V, Bertini A, Loli A, Colinon C, Villa L et al (2006) Replicon typing of plasmids encoding resistance to newer beta-lactams. Emerg Infect Dis 12:1145–1148.

    PubMed  CAS  Google Scholar 

  126. Welch TJ, Fricke WF, McDermott PF, White DG, Rosso ML, Rasko DA et al (2007) Multiple antimicrobial resistance in plague: an emerging public health risk. PLoS One 2:e309

    PubMed  Google Scholar 

  127. Switt AI, Soyer Y, Warnick LD, Wiedmann M (2009) Emergence, distribution, and molecular and phenotypic characteristics of Salmonella enterica serotype 4,5,12:i. Foodborne Pathog Dis 6:407–415

    PubMed  Google Scholar 

  128. Hopkins KL, Kirchner M, Guerra B, Granier SA, Lucarelli C, Porrero MC et al (2010) Multiresistant Salmonella enterica serovar 4,[5],12:i:- in Europe: a new pandemic strain? Euro Surveill 15:19580

    PubMed  CAS  Google Scholar 

  129. Lucarelli C, Dionisi AM, Torpdahl M, Villa L, Graziani C, Hopkins K et al (2010) Evidence for a second genomic island conferring multidrug resistance in a clonal group of strains of Salmonella enterica serovar Typhimurium and its monophasic variant circulating in Italy, Denmark, and the United Kingdom. J Clin Microbiol 48:2103–2109

    PubMed  CAS  Google Scholar 

  130. Sarmah AK, Meyer MT, Boxall AB (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759

    PubMed  CAS  Google Scholar 

  131. Heuer H, Schmitt H, Smalla K (2011) Antibiotic resistance gene spread due to manure application on agricultural fields. Curr Opin Microbiol 14:236–243

    PubMed  CAS  Google Scholar 

  132. Heuer H, Smalla K (2007) Manure and sulfadiazine synergistically increased bacterial antibiotic resistance in soil over at least two months. Environ Microbiol 9:657–666

    PubMed  CAS  Google Scholar 

  133. Binh CT, Heuer H, Gomes NC, Kotzerke A, Fulle M, Wilke BM et al (2007) Short-term effects of amoxicillin on bacterial communities in manured soil. FEMS Microbiol Ecol 62:290–302

    PubMed  CAS  Google Scholar 

  134. Heuer H, Solehati Q, Zimmerling U, Kleineidam K, Schloter M, Muller T et al (2011) Accumulation of sulfonamide resistance genes in arable soils due to repeated application of manure containing sulfadiazine. Appl Environ Microbiol 77:2527–2530

    PubMed  CAS  Google Scholar 

  135. Binh CT, Heuer H, Kaupenjohann M, Smalla K (2008) Piggery manure used for soil fertilization is a reservoir for transferable antibiotic resistance plasmids. FEMS Microbiol Ecol 66:25–37

    PubMed  CAS  Google Scholar 

  136. Binh CT, Heuer H, Kaupenjohann M, Smalla K (2009) Diverse aadA gene cassettes on class 1 integrons introduced into soil via spread manure. Res Microbiol 160:427–433

    PubMed  CAS  Google Scholar 

  137. Heuer H, Binh CT, Jechalke S, Kopmann C, Zimmerling U, Krogerrecklenfort E et al (2012) IncP-1epsilon plasmids are important vectors of antibiotic resistance genes in agricultural systems: diversification driven by class 1 integron gene cassettes. Front Microbiol 3:2

    PubMed  Google Scholar 

  138. Tsafnat G, Copty J, Partridge SR. (2011) RAC: Repository of antibiotic resistance cassettes. Database : the journal of biological databases and curation. 2011:bar054.

    Google Scholar 

  139. Fluit AC, Schmitz FJ (1999) Class 1 integrons, gene cassettes, mobility, and epidemiology. Euro J Clin Microbiol Infect Dis 18:761–770

    CAS  Google Scholar 

  140. Rowe-Magnus DA, Mazel D (2002) The role of integrons in antibiotic resistance gene capture. J Med Microbiol 292:115–125

    CAS  Google Scholar 

  141. Fluit AC, Schmitz FJ (2004) Resistance integrons and super-integrons. Clin Microbiol Infect 10:272–288

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piklu Roy Chowdhury PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Martinez, E., Djordjevic, S., Stokes, H., Roy Chowdhury, P. (2013). Mobilized Integrons: Team Players in the Spread of Antibiotic Resistance Genes. In: Gophna, U. (eds) Lateral Gene Transfer in Evolution. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7780-8_4

Download citation

Publish with us

Policies and ethics