Skip to main content

Agrobacterium rhizogenes-Mediated Transformation and Its Biotechnological Applications in Crops

  • Chapter
  • First Online:

Abstract

The history of Agrobacterium-related plant biotechnology goes back for more than three decades with the discovery of molecular mechanisms of crown gall disease in plants. After 1980s, gene technologies began developing rapidly and today, related with the improved gene transfer methods, plant biotechnology has become one of the most important branches in science. Till now, the most important genes related with agricultural affairs have been utilized for cloning of plants with the deployment of different techniques used in genetic engineering. Especially, Agrobacterium tumefaciens was used extensively for transferring desired genetic materials to plants rapidly and effectively by the researchers to create transgenic plants. Recognition of the biology of Agrobacterium species and newly developed applications of their T-DNA systems has been a great step in plant biotechnology. This chapter provides the reader with extensive information on A. rhizogenes which is responsible for the development of hairy root disease in a wide range of dicotyledonous plants and its T-DNA system. This knowledge will be useful in improving utilization of crops and the formulation of new and up-graded transgenic based food products.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aarrouf J, Castro-Quezada P, Mallard S, Caromel B, Lizzi Y, Lefebvre V (2012) Agrobacterium rhizogenes-dependent production of transformed roots from foliar explants of pepper (Capsicum annuum): a new and efficient tool for functional analysis of genes. Plant Cell Rep 31:391–401

    Article  PubMed  CAS  Google Scholar 

  • Abarca-Grau AM, Penyalver R, Lopez MM, Marco-Noales E (2011) Pathogenic and non-pathogenic Agrobacterium tumefaciens, A. rhizogenes and A. vitis strains form biofilms on abiotic as well as on root surfaces. Plant Pathol 60:416–425

    Article  Google Scholar 

  • Abd El-Mawla AMA (2010) Effect of certain elicitors on production of pyrrolizidine alkaloids in hairy root cultures of Echium rauwolfii. Pharmazie 65:224–226

    PubMed  CAS  Google Scholar 

  • Ackermann C (1977) Pflanzen aus Agrobacterium rhizogenes tumoren and Nicotiana tabacum. Plant Sci Lett 8:23–30

    Article  Google Scholar 

  • Akasaka Y, Mii M, Daimon H (1998) Morphological alterations and root nodule formation in Agrobacterium rihzogenes-mediated transgenic hairy roots of peanut (Arachis hypogaea L.). Ann Bot 81:355–362

    Article  Google Scholar 

  • Akutsu M, Ishizaki T, Sato H (2004) Transformation of the monocot Alstroemeria by Agrobacterium rhizogenes. Mol Breeding 13:69–78

    Article  CAS  Google Scholar 

  • Alpizar E, Dechamp E, Espeout S, Royer M, Lecouls AC, Nicole M, Bertrand B, Lashermes P, Etienne H (2006) Efficient production of Agrobacterium rhizogenes-transformed roots and composite plants for studying gene expression in coffee roots. Plant Cell Rep 25:959–967

    Article  PubMed  CAS  Google Scholar 

  • Altamura MM, Tomassi M (1998) Auxin, photoperiod and putrescine affect flower eoformation in normal and rolB-transformed tobacco thin cell layers. Plant Physiol Biochem 36:441–448

    Article  CAS  Google Scholar 

  • Andarwulan N, Shetty K (1999) Phenolic synthesis in differentiated tissue cultures of untransformed and Agrobacterium-transformed roots of anise (Pimpinella anisum L.). J Agric Food Chem 47:1776–1780

    Google Scholar 

  • Aoki S, Syono K (1999) Short communication synergistic function of rolB, rolC, ORF13 and ORF14 of TL-DNA of Agrobacterium rhizogenes in hairy root induction in Nicotiana tabacum. Plant Cell Physiol 40(2):252–256

    Article  CAS  Google Scholar 

  • Arican E, Bajrovic K, Gozukirmizi N (1998) Effects of naphthalene acetic acid on transformation frequency of potato and tobacco via Agrobacterium rhizogenes. Biotechnol Biotec Eq 12(1):29–33

    Google Scholar 

  • Ayadi R, Tremouillaux-Guiller J (2003) Root formation from transgenic calli of Ginkgo biloba. Tree Physiol 23:713–718

    Article  PubMed  Google Scholar 

  • Ayala-Silva T, Bey CA, Dortch G (2007) Agrobacterium rhizogenes mediated transformation of Asimina triloba L. cuttings. Pak J Biol Sci 10:132–136

    Article  PubMed  CAS  Google Scholar 

  • Azlan GJ, Marziah M, Radzali M, Johari (2002) Establishment of Physalis minima hairy roots culture for the production of physalins. Plant Cell Tiss Org 69:271–278

    Article  Google Scholar 

  • Bajrovic K, Arı Ş, Arıcan E, Kazan K, Gözükırmızı N (1995) Biotechnol Biotec Eq 1:29–32

    Google Scholar 

  • Balandrin MF, Klocke JA, Wurtele ES, Bollinger WH (1985) Natural plant chemicals: sources of industrial and medicinal materials. Science 228:1154–1160

    Article  PubMed  CAS  Google Scholar 

  • Bandyopadhyay M, Jha S, Tepfer D (2007) Changes in morphological phenotypes and withanolide composition of Ri-transformed roots of Withania somnifera. Plant Cell Rep 26:599–609

    Article  PubMed  CAS  Google Scholar 

  • Banerjee S, Zehra M, Gupta MM, Kumar S (1997) Agrobacterium rhizogenes mediated transformation of Artemisia annua -production of transgenic plants. Planta Med 63:467–469

    Google Scholar 

  • Bellincampi D, Cardarelli M, Zaghi D, Serino G, Salvi G, Gatz C, Cervone F, Altamura MM, Constantino P, De-Lorenzo G (1996) Oligogalacturonides prevent rhizogenesis in rolB transformed tobacco explants by inhibiting auxin-induced expression of the rolB gene. Plant Cell 8:477–487

    PubMed  CAS  Google Scholar 

  • Bell RL, Scorza R, Srinivasan C, Webb K (1999) Transformation of ‘Beurre Bosc’ pear with the rolC gene. J Arner Soc Hort Sci 124:570–574

    Google Scholar 

  • Bensaddek L, Villarreal ML, Fliniaux MA (2008) Induction and growth of hairy roots for the production of medicinal compounds. Electron J Integr Biosci 3(1):2–9

    Google Scholar 

  • Berlin J, Ruegenhagen C, Dietze P, Fecker LF, Goddijn OJM, Hoge JHC (1993) Increased production of seratonin by suspension and root cultures of Peganum harmala transformed with a tryptophan decarboxylase cDNA clone from Cathranthus roseus. Transgenic Res 2:336–344

    Google Scholar 

  • Bettini P, Michelotti S, Bindi D, Giannini R, Capuana M, Buiatti M (2003) Pleiotropic effect of the insertion of the Agrobacterium rhizogenes rolD gene in tomato (Lycopersicon esculentum Mill.). Theor Appl Genet 107:831–836

    Article  PubMed  CAS  Google Scholar 

  • Binns AN, Costantino P (1998) The Agrobacterium oncogenes. In: Spaink HP, Kondorosi A, Hooykaas PJ (eds) The Rhizobiaceae: molecular biology of model plant-associated bacteria. Kluwer Academic Publishers, Dordrecht, pp. 251–266

    Google Scholar 

  • Binns AN, Chen RH, Wood HN, Lynn DG (1987) Cell division promoting activity of naturally occurring dehydrodiconiferyl glucosides: do cell wall components control cell division? Proc Natl Acad Sci USA 84:980–984

    Article  PubMed  CAS  Google Scholar 

  • Birch RG (1997) Plant transformation: problems and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol 48:297–326

    Article  PubMed  CAS  Google Scholar 

  • Block M (1993) The cell biology of plant transformation: current state, problems, prospects and the implications for the plant breeding. Euphytica 71(1–2):1–14

    Article  Google Scholar 

  • Bonhomme V, Laurain-Mattar D, Lacoux J, Fliniaux MA, Jacquin-Dubreuil A (2000) Tropane alkaloid production by hairy roots of Atropa belladonna obtained after transformation with Agrobacterium rhizogenes 15834 and Agrobacterium tumefaciens containing rolA, B, C genes only. J Biotech 81(2–3):151–158

    Article  CAS  Google Scholar 

  • Bosselut N, Van Ghelder C, Claverie M, Voisin R, Onesto JP, Rosso MN, Esmenjaud D (2011) Agrobacterium rhizogenes-mediated transformation of Prunus as an alternative for gene functional analysis in hairy-roots and composite plants. Plant Cell Rep 30(7):1313–1326

    Article  PubMed  CAS  Google Scholar 

  • Bouchez D, Camilleri C (1990) Identification of a putative rolB gene on the TR-DNA of the Agrobacterium rhizogenes A4 Ri plasmid. Plant Mol Biol 14:617–619

    Article  PubMed  CAS  Google Scholar 

  • Boulter ME, Croy E, Simpson P, Shields R, Croy RRD, Shirsat AH (1990) Transformation of Brassica napus L. (oilseed rape) using Agrobacterium tumefaciens and Agrobacterium rhizogenes- a comparison. Plant Sci 70:91–99

    Article  CAS  Google Scholar 

  • Brevet J, Tempe J (1988) Homology mapping of T-DNA regions on three Agrobacterium rhizogenes Ri plasmids by electron microscope heteroduplexstudies. Plasmid 19:75–83

    Article  PubMed  CAS  Google Scholar 

  • Brillanceau MH, David C, Tempe J (1989) Genetic transformation of Catharanthus roseus G. Don by Agrobacterium rhizogenes. Plant Cell Rep 8:63–66

    Google Scholar 

  • Britton MT, Escobar MA, Dandekar M (2008) The oncogenes of Agrobacterium tumefaciens and Agrobacterium rhizogenes. In: Tzfira T, Citovsky V (eds) Agrobacterium: from biology to biotechnology. Springer, Heidelberg, pp. 525–563

    Google Scholar 

  • Broothaerts W, Mitchell HJ, Weir B, Kaines S, Smith LMA, Yang WM, Jorge E, Roa-rodriguez CJ, Richard A (2005) Gene transfer to plants by diverse species of bacteria. Nature 433:629–633

    Article  PubMed  CAS  Google Scholar 

  • Bulgakov VP (2008) Functions of rol genes in plant secondary metabolism. Biotechnol Adv 26:318–324

    Article  PubMed  CAS  Google Scholar 

  • Bulgakov VP, Khodakovskaya MV, Labetskaya NV, Tchernoded GK, Zhuravlev YN (1998) The impact of plant rolC oncogene on ginsenoside production by ginseng hairy root cultures. Phytochemistry 49:1929–1934

    Article  CAS  Google Scholar 

  • Bulgakov VP, Tchernoded GK, Mischenko NP, Khodakovskaya MV, Glazunov VP, Zvereva EV, Fedoreyev SA, Zhuravlev YN (2002a) Effect of salicylic acid, methyl jasmonate, ethephon and cantharidin on anthraquinone production by Rubia cordifolia callus cultures transformed with the rolB and rolC genes. J Biotechnol 97:213–221

    Article  CAS  Google Scholar 

  • Bulgakov VP, Kusaykin M, Tchernoded GK, Zvyagintseva TN, Zhuravlev YN (2002b) Carbohydrase activities of the rolC-gene transformed and non-transformed ginseng cultures. Fitoterapia 73:638–643

    Article  CAS  Google Scholar 

  • Bulgakov VP, Tchernoded GK, Mischenko NP, Shkryl YN, Fedoreyev SA, Zhuravlev YN (2004) The rolB and rolC genes activate synthesis of anthraquinones in Rubia cordifolia cells by mechanism independent of octadecanoid signaling pathway. Plant Sci 166:1069–1075

    Article  CAS  Google Scholar 

  • Caboni E, Lauri P, Tonelli M, Falasca G, Damiano C (1996) Root induction by Agrobacterium rhizogenes in walnut. Plant Sci 118:203–208

    Article  CAS  Google Scholar 

  • Cabrera-Ponce JL, Vegas-Garcia A, Herrera-Estrella L (1996) Regeneration of transgenic papaya plants via somatic embryogenesis induced by Agrobacterium rhizogenes. In Vitro Cell Dev Biol Plant 32:86–90

    Google Scholar 

  • Cai G, Li G, Ye H (1995) Hairy root culture of Artemisia annua L. by Ri plasmid transformation and biosynthesis of artemisinin. Chinese J Biotechnol 11(4):227–235

    CAS  Google Scholar 

  • Camilleri C, Jouanin L (1991) The TR-DNA region carrying the auxin synthesis genes of the Agrobacterium rhizogenes agropine type plasmid pRiA4: nucleotide sequence analysis and introduction into tobacco plants. Mol Plant Microbe Interact 4:155–162

    Article  PubMed  CAS  Google Scholar 

  • Capone IL, Spano L, Cardarelli M, Bellincampi D, Petit A, Constantino P (1989) Induction and growth properties of carrot roots with different complements of Agrobacterium rhizogenes T-DNA genes. Plant Mol Biol 13:43–52

    Article  PubMed  CAS  Google Scholar 

  • Cardarelli M, Spanò L, De Paolis A, Mauro ML, Vitali G, Costantino P (1985) Identification of the genetic locus responsible for non-polar root induction by Agrobacterium rhizogenes 1855. Plant Mol Biol 5:385–391

    Google Scholar 

  • Cardarelli M, Mariotti D, Pomponi M, Spano L, Capone I, Costantino P (1987a) Agrobacterium rhizogenes T-DNA genes capable of inducing hairy root phenotype. Mol Gen Genet 209(3):475–480

    Article  CAS  Google Scholar 

  • Cardarelli M, Spano L, Mariotti D, Mauro ML, Van Sluys MA, Costantino P (1987b) The role of auxin in hairy root induction. Mol Gen Genet 208:457–463

    Article  CAS  Google Scholar 

  • Casanova E, Zuker A, Trillas MI, Moysset L, Vainstein A (2003) The rolC gene in carnation exhibits cytokinin- and auxin-like activities. Sci Hortic 97:321–331

    Article  CAS  Google Scholar 

  • Casanova E, Valdes AE, Zuker A, Fernandez B, Vainstein A, Trillas MI, Moysset L (2004) rolC-transgenic carnation plants: adventitious organogenesis and levels of endogenous auxin and cytokinins. Plant Sci 167(3):551–560

    Article  CAS  Google Scholar 

  • Census (2012) The official website of U.S. Department of Commerce, U.S. Census Bureau-World POPClock Projection. http://www.census.gov. Accessed: 25. May 2011

  • Chandra S (2012) Natural plant genetic engineer Agrobacterium rhizogenes: role of T-DNA in plant secondary metabolism. Biotechnol Lett 34(3):407–415

    Article  PubMed  CAS  Google Scholar 

  • Charlwood BV, Charlwood KA (1991) Terpenoid production in plant cell culture. In: Harborne JB, Tomas-Barberan FE (eds) Ecological chemistry and biochemistry of plant terpenoids. Clarendon Press, Oxford, pp 95–132

    Google Scholar 

  • Chattopadhyay T, Roy S, Mitra A, Maiti MK (2011) Development of a transgenic hairy root system in jute (Corchorus capsularis L.) with GUSA reporter gene through Agrobacterium rhizogenes mediated co-transformation. Plant Cell Rep 30(4):485–493

    Article  PubMed  CAS  Google Scholar 

  • Chaudhuri KN, Ghosh B, Tepfer D, Jha S (2006) Spontaneous plant regeneration in transformed roots and calli from Tylophora indica: changes in morphological phenotype and tylophorine accumulation associated with transformation by Agrobacterium rhizogenes. Plant Cell Rep 25(10):1059–1066

    Article  PubMed  CAS  Google Scholar 

  • Chavarri M, GarcÍa AV, Zambrano AY, Gutiérrez Z, Demey JR (2010) Insertion of Agrobacterium rhizogenes rolB gene in Mango. Interciencia 35(7):521–525

    Google Scholar 

  • Chavez-Vela NA, Chavez-Ortiz LI, Perez-Molphe Balch E (2003) Genetic transformation of sour orange using Agrobacterium rhizogenes. Agrociencia 37:629–639

    Google Scholar 

  • Cheng M, His DCH, Philips GC (1992) In vitro regeneration of Valencia type peanut (Arachis hypogaea L.) from cultured petioles, epicotyl, sections and other seedling explants. Peanut Sci 19:82–87

    Article  Google Scholar 

  • Chilton MD, Tepfer D, Petit A, David C, Delbart C-F, Tempt J (1982) Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature 295:432–434

    Article  CAS  Google Scholar 

  • Cho HJ, Wildholm JM (2002) Improved shoot regeneration protocol for hairy roots of the legume Astragalus sinicus. Plant Cell Tiss Org 69:259–269

    Article  CAS  Google Scholar 

  • Cho H-J, Widholm JM, Tanaka N, Nakanishi Y, Murooka Y (1998) Agrobacterium rhizogenes-mediated transformation and regeneration of the legume Astragalus sinicus (Chinese milk vetch). Plant Sci 138:53–65

    Article  CAS  Google Scholar 

  • Christensen B, Sriskandarajah S, Serek M, Müller R (2008) Transformation of Kalanchoe blossfeldiana with rol-genes is useful in molecular breeding towards compact growth. Plant Cell Rep 27:1485–1495

    Article  PubMed  CAS  Google Scholar 

  • Christey MC (2001) Use of Ri-mediated transformation for production of transgenic plants. In Vitro Cell Dev Biol Plant 37:687–700

    Article  CAS  Google Scholar 

  • Christey MC, Braun RH (2001) Transgenic vegetable and forage Brassica species: rape, kale, turnip and rutabaga (Swede). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, Transgenic crops II 47:87–101

    Google Scholar 

  • Christey MC, Braun RH, Reader JK (1999) Field performance of transgenic vegetable brassicas (Brassica oleracea and B. rapa) transformed with Agrobacterium rhizogenes. Sabrao J Breed Genet 31:93–108

    Google Scholar 

  • Christey MC, Sinclair BK (1992) Regeneration of trasgenic kale (Brassica oleracea var. acephal), rap (B. napus) and turnip (B. campestris var rapifera) plants via Agrobacterium rhizogenes mediated transformation. Plant Sci 87:161–169

    Article  CAS  Google Scholar 

  • Christey MC, Sinclair BK, Braun RH, Wyke L (1997) Regeneration of transgenic vegetable brassicas (Brassica oleracea and B. campestris) via Ri-mediated transformation. Plant Cell Rep 16:587–593

    Article  CAS  Google Scholar 

  • Christie PJ, Ward JE, Winans SC, Nester EW (1988) The Agrobacterium tumefaciens virE2 gene product is a single-stranded- DNA-binding protein that associates with T-DNA. J Bacteriol 170:2659–2667

    PubMed  CAS  Google Scholar 

  • Christou P (1997) Biotechnology applied to grain legumes. Field Crop Res 53:83–97

    Article  Google Scholar 

  • Chuck G, Lincoln C, Hake S (1996) KNAT1 induces lobed leaves with ectopic meritems when overexpressed in Arabidopsis. Plant Cell 8:1277–1289

    PubMed  CAS  Google Scholar 

  • Citovsky V, Zupan J, Warnick D, Zambryski P (1992) Nuclear localization of Agrobacterium VirE2 protein in plant cells. Science 256:1802–1805

    Article  PubMed  CAS  Google Scholar 

  • Collier R, Fuchs B, Walter N, Kevin LW, Taylor CG (2005) Ex vitro composite plants: an inexpensive, rapid method for root biology. Plant J 43:449–457

    Article  PubMed  CAS  Google Scholar 

  • Comai L, Kosuge T (1982) Cloning and characterization of iaaM, a virulence determinant of Pseudomonas savastanoi. J Bacteriol 149:40–46

    PubMed  CAS  Google Scholar 

  • Conn HJ (1942) Validity of the genus Alcaligenes. J Bacteriol 44:353–360

    PubMed  CAS  Google Scholar 

  • Costantion P, Spano L, Pomponi M, Benevuto E, Ancora G (1984) The T-DNA of Agrobacterium rhizogenes is transmitted through meiosis to the progeny of hairy root plants. J Mol Appl Genet 2(5):465–470

    Google Scholar 

  • Costantino P, Capone I, Cardarelli M, De-Paolis A, Mauro ML, Trovato M (1994) Bacterial plant oncogenes: the rol genes’ saga. Genetica 94:203–211

    Article  PubMed  CAS  Google Scholar 

  • Daimon H, Mii M (1995) Plant regeneration and thiophene production in hairy root cultures of Rudbeckia hirta L. used as an antagonistic plant to nematodes. Jpn J Crop Sci 64:650–655

    Google Scholar 

  • Damiani F, Aricioni S (1991) Transformation of Medicago arborea L. with Agrobacterium rhizogenes binary vector carrying the hygromycin resistance genes. Plant Cell Rep 10:300–303

    Article  CAS  Google Scholar 

  • Davey MR, Mulligan BJ, Gartland KMA, Peel E, Sargent AW, Morgan AJ (1987) Transformation of Solanum and Nicotiana species using an Ri plasmid vector. J Exp Bot 38:1507–1516

    Google Scholar 

  • David C, Chilton MD, Tempe J (1984) Conservation of T-DNA in plants regenerated from hairy root cultures. Biotech 2:73–76

    Article  CAS  Google Scholar 

  • Davioud E, Petit A, Tate ME, Ryder MH, Tempe J (1988) Cucumopine-a new T-DNA-encoded opine in hairy root and crown gall. Phytochemistry 27(8):2429–2433

    Article  CAS  Google Scholar 

  • De Paolis A, Mauro ML, Pompon M, Cardarelli M, Spano L, Costantino P (1985) Localization of agropine synthesizing functions in the TR region of the root inducing plasmid of Agrobacterium rhizogenes 1855. Plasmid 13:1–7

    Article  PubMed  Google Scholar 

  • Dehio C, Grossmann K, Schell J, Schmülling T (1993) Phenotype and hormonal status of transgenic tobacco plants overexpressing the rolA gene of Agrobacterium rhizogenes T-DNA. Plant Mol Biol 23(6):1199–1210

    Article  PubMed  CAS  Google Scholar 

  • Dehio C, Schell J (1993) Stable expression of a single-copy rolA gene in transgenic Arabidopsis thaliana plants allows an exhaustive mutagenic analysis of the transgene-associated phenotype. Mol Gen Genet 241:359–366

    PubMed  CAS  Google Scholar 

  • Delbarre A, Muller P, Imhoff V, Barbier-Brygoo H, Maurel C, Leblanc N, Perrot-Rechenmann C, Guern J (1994) The rolB Gene of Agrobacterium rhizogenes does not increase the auxin sensitivity of tobacco protoplasts by modifying the intracellular auxin concentration. Plant Physiol 105:563–569

    PubMed  CAS  Google Scholar 

  • Dessaux Y, Petit A, Tempe J (1992) Opines in Agrobacterium biology. In: Verma DPS (ed) Molecular signals in plant-microbe communications. CRC Press, Boca Raton, pp 109–136

    Google Scholar 

  • Diaz CL, Melchers LS, Hooykaas PJJ, Lugtenberg BJJ, Kijne JW (1989) Root lectin as a determinant of host-plant specificity in the Rhizobium-legume symbiosis. Nature 338:579–581

    Article  CAS  Google Scholar 

  • Díaz Cl, Spaink HP, Kijne JW (2000) Heterologous rhizobial lipchitin oligosaccharides and chitin oligomers induce cortical cell divisions in red clover roots, transformed with the pea lectin gene. Mol Plant Microbe Interact 13:268–276

    Google Scholar 

  • Diouf D, Gherbi H, Prin Y, Franche C, Duhoux E, Bogusz D (1995) Hairy root nodulation of Casuarina glauca: a system for the study of symbiotic gene expression in an actinorhizal tree. Mol Plant Microbe Interact 8:532–537

    Article  PubMed  CAS  Google Scholar 

  • Dodueva IE (2007) A Study of expression of the genes involved in systemic control of cell division and differentiation in higher plants on the model of spontaneous tumorigenesis in inbred radish lines (Raphanus sativus var. radicula Pers.). Cand Sci (Biol) Dissertation, St. Petersburg: Gos. Univ

    Google Scholar 

  • Dommisse EM, Leung DWM, Shaw ML, Conner AJ (1990) Onion is a monocotyledonous host for Agrobacterium. Plant Sci 69:249–257

    Article  Google Scholar 

  • Doran PM (2002) Properties and applications of hairy root cultures. In: Marja K, Caldentey KM, Barz W (eds) Plant biotechnology and transgenic plants. Marcel Dekker Inc, New York, pp 1–20

    Google Scholar 

  • Downs CG, Christey MC, Davies KM, King GA, Seelye JF, Sinclair BK, Stevenson DG (1994) Hairy roots of Brassica napus: II glutamine synthase over expression alters ammonia assimilation and the response to phosphinothricin. Plant Cell Rep 14:41–46

    Google Scholar 

  • Drewes FE, Staden JV (1995) Initiation of and solasodine production in hairy root cultures of Solanum mauritianum. Scop Plant Growth Regul 17:27–31

    CAS  Google Scholar 

  • Duckely M, Hohn B (2003) The VirE2 protein of Agrobacterium tumefaciens: the Yin and Yang of T-DNA transfer. FEMS Microbiol Lett 223:1–6

    Article  PubMed  CAS  Google Scholar 

  • Durand-Tardif M, Broglie R, Slightom J, Tepfer D (1985) Structure and expression of Ri T-DNA from Agrobacterium rhizogenes in Nicotiana tabacum. J Mol Biol 186:557–564

    Article  PubMed  CAS  Google Scholar 

  • Ephritikhine G, Barbier-Brygoo H, Muller JF, Guern J (1987) Auxin effect on the transmembrane potential difference of wild-type and mutant tobacco protoplasts exhibiting a differential sensitivity to auxin. Plant Physiol 83:801–804

    Article  PubMed  CAS  Google Scholar 

  • Ercan AG, Taski KM, Turgut K, Yuce S (1999) Agrobacterium rhizogenes-mediated hairy root formation in some Rubia tinctorum L populations grown in Turkey. Turk J Bot 23:373–378

    Google Scholar 

  • Estrada-Navarrete G, Alvarado-Affantranger X, Olivares JE, Diaz-Camino C, Santana O, Murillo E, Guillen G, Sanchez-Guevara N, Acosta J, Quinto C, Li DX, Gresshoff PM, Sanchez F (2006) Agrobacterium rhizogenes transformation of the Phaseolus spp: a tool for functional genomics. Mol Plant Microb Interact 19:1385–1393

    Article  CAS  Google Scholar 

  • Estramareix C, Ratet P, Boulanger F, Richaud F (1986) Multiple mutations in the transferred regions of the Agrobacterium rhizogenes root-inducing plasmids. Plasmid 15:245–247

    Article  PubMed  CAS  Google Scholar 

  • Estruch JJ, Chriqui D, Grossmann K, Schell J, Spena A (1991) The plant oncogene rolC is responsible for the release of cytokinins from glucoside conjugates. EMBO J 10:2889–2895

    PubMed  CAS  Google Scholar 

  • Faiss M, Strnad M, Redig P, Dolzak K, Hanus J, Van Onckelen H, Schmuelling T (1996) Chemically induced expression of the rol cencoded β-glucuronidase in transgenic tobacco plants and analysis of cytokinin metabolism: RolC does not hydrolyze endogenous cytokinin glucosides in planta. Plant J 10:33–46

    Article  CAS  Google Scholar 

  • Filetici P, Spano L, Costantino P (1987) Conserved regions in the T-DNA of different Agrobacterium rhizogenes root inducing plasmid. Plant Mol Biol 9:19–26

    Article  CAS  Google Scholar 

  • Filichkin SA, Gelvin SB (1993) Formation of a putative relaxation intermediate during T-DNA processing directed by Agrobacterium tumefaciens VirD1/D2 endonuclease. Mol Microbiol 8:915–926

    Article  PubMed  CAS  Google Scholar 

  • Filippini F, Lo Schiavo F, Terzi M, Costantino P, Trovato M (1994) The plant oncogene rolB alters binding of auxin to plant cell membranes. Plant Cell Physiol 35:767–771

    CAS  Google Scholar 

  • Filippini F, Rossi V, Marin O, Trovato M, Costantino P, Downey PM, Lo Schiavo F, Terzi M (1996) A plant oncogene as a phosphatase. Nature 379:499–500

    Article  PubMed  CAS  Google Scholar 

  • Firoozabady E, Moy Y, Courtney-Gutterson N, Robinson K (1994) Regeneration of transgenic rose (Rosa hybrida) plants from embryogenic tissue. Bio/Technology 12:609–613

    Google Scholar 

  • Fladung M (1990) Transformation of diploid and tetraploid potato clones with the rolC gene of Agrobacterium rhizogenes and the characterization of transgenic plants. Plant Breeding 104:295–304

    Article  Google Scholar 

  • Flores HE, Vivanco JM, Loyola-Vargas VM (1999) Radicle biochemistry: the biology of root-specific metabolism. Trends Plant Sci 4:220–226

    Article  PubMed  Google Scholar 

  • Forde BG, Day HM, Turton JF, Shen WJ, Cullimore V, Oliver JE (1989) Two glutamine synthase genes from Phaseolus vulgaris L. display contrasting developmental and spatial patterns of expression in transgenic Lotus corniculatus plants. Plant Cell 1:391–401

    PubMed  CAS  Google Scholar 

  • Frundt C, Meyer AD, Ichikawa T, Meins FJ (1998) Evidence for the ancient transfer of Ri plasmid T-DNA genes between bacteria and plants. In: Syvanen M, Kado CI (eds) Horizontal gene transfer. Chapman and Hall, London, pp 94–106

    Google Scholar 

  • Gartland JS (1995) Agrobacterium virulence. In: Gartland KMA, Davey MR (eds) Methods in molecular biology 44 Agrobacterium protocols. Humana Press, New Jersey

    Chapter  Google Scholar 

  • Gaudin V, Jouanin L (1995) Expression of Agrobacterium rhizogenes auxin biosynthesis genes in transgenic tobacco plants. Plant Mol Biol 28:123–36

    Article  PubMed  CAS  Google Scholar 

  • Gaudin V, Vrain T, Jouanin L (1994) Bacterial genes modifying hormonal balances in plants. Plant Physiol Biochem 32:11–29

    CAS  Google Scholar 

  • Gelvin SB (1998) Agrobacterium VirE2 proteins can form a complex with T strands in the plant cytoplasm. J Bacteriol 180:4300–4302

    PubMed  CAS  Google Scholar 

  • Gelvin SB (2003) Improving plant genetic engineering by manipulating the host. Trends Biotechnol 21:95–98

    Article  PubMed  CAS  Google Scholar 

  • Gelvin SB (2009) Agrobacterium in the genomics age. Plant Physiol 150:1665–1676

    Article  PubMed  CAS  Google Scholar 

  • Gepts P (2002) A Comparison between crop domestication, classical plant breeding, and genetic engineering. Crop Sci 42:1780–1790

    Article  Google Scholar 

  • Giovannini A, Pecchioni N, Rabaglio M, Allavena A (1997) Characterization of ornamental datura plants transformed by Agrobacterium rhizogenes. In Vitro Cell Dev Biol Plant 33:101–106

    Google Scholar 

  • Giri A, Banerjee S, Ahuja PS, Giri CC (1997) Production of hairy roots in Aconitum heterophyllum wall using Agerobacterium rhizogenes. In Vitro Cell Dev Biol Plant 33:280–284

    Article  Google Scholar 

  • Giri A, Giri CC, Dhingra V, Narasu ML (2001) Enhanced podophyllotoxin production from Agrobacterium rhizogenes transformed cultures of Podophyllum hexandrum. Nat Prod Lett 15:229–235

    Article  PubMed  CAS  Google Scholar 

  • Giri A, Narasu ML (2000) Research review paper transgenic hairy roots: recent trends and applications. Biotechnol Adv 18:1–22

    Article  PubMed  CAS  Google Scholar 

  • Giri CC, Giri A (2007) Plant biotechnology. Practical Manual I International Publishing House Pvt. Ltd., New Delhi, pp 69–76

    Google Scholar 

  • Golds TJ, Lee JY, Husnain T, Ghose TK, Davey MR (1991) Agrobacterium rhizogenes mediated transformation of the forage legumes Medicago sativa and Onobrychis viciifolia. J Exp Bot 42:1147–1157

    Google Scholar 

  • Gorpenchenko TY, Kiselev KV, Bulgakov VP, Tchernoded GK, Bragina EA, Khodakovskaya MV, Koren OG, Batygina TB, Zhuravlev YN (2006) The Agrobacterium rhizogenes rolC-gene induced somatic embryogenesis and shoot organogenesis in Panax ginseng transformed calluses. Planta 22:3457–3467

    Google Scholar 

  • Graham LA, Liou YC, Walker VK, Davies PL (Aug 1997) Hyperactive antifreeze protein from beetles. Nature 388(6644):727–728

    Google Scholar 

  • Grant JE, Dommisse EM, Conner AJ (1991) Gene transfer to plants using Agrobacterium. In: Murray DR (ed) Advanced methods in plant breeding and biotechnology. CAB International, Wallingford, pp 50–73

    Google Scholar 

  • Gutierrez-Pesce P, Taylor K, Muleo R, Rugini E (1998) Somatic embryogenesis and shoot regeneration from transgenic roots of the cherry root stock colt (Prunus avium, P. pseudocerasus) mediated by pRi 1855 T-DNA of Agrobacterium rhizogenes. Plant Cell Rep 17:574–580

    Article  CAS  Google Scholar 

  • Guyon P, Chilton M-D, Petit A, Tempe J (1980) Agropine in “null-type” crown gall tumors: evidence for generality of the opine concept. Proc Natl Acad Sci 77:2693–2697

    Article  PubMed  CAS  Google Scholar 

  • Guyon P, Petit A, Tempe J, Dessau Y (1993) Transformed plants producing opines specifically promote growth of opine-degrading agrobacteria. Mol Plant Microb Interact 6:92–98

    Article  CAS  Google Scholar 

  • Hamill JD, Robins RJ, Parr AJ, Evans PM, Furze JD, Rhodes MJC (1990) Over expressing a yeast ornithine decarboxylase gene in transgenic roots of Nicotiana rustica can lead to enhanced nicotine accumulation. Plant Mol Biol 15:27–38

    Article  PubMed  CAS  Google Scholar 

  • Han KH, Keathley DE, Davis JM, Gordon MP (1993) Regeneration of a transgenic woody legume Robinia pseudoacacia L, (Black locust) and morphological alterations induced by Agrobacterium rhizogenes mediated transformation. Plant Sci 88:149–57

    Article  Google Scholar 

  • Handa T (1992) Regneration and charaterization of prairie gentian (Eustoma grandiflorum) plants transformed by Agrobacterium rhizogenes. Plant Tiss Cult Lett 9:10–14.

    Article  Google Scholar 

  • Hansen G, Larribe M, Vaubert D, Tempe J, Biermann BJ, Montoya AL, Chilton MD, Brevet J (1991) Agrobacterium rhizogenes pRi8196 T-DNA: mapping and DNA sequence of functions involved in mannopine synthesis and hairy root differentiation (Ri plasmid). Proc Natl Acad Sci 88:7763–7767

    Article  PubMed  CAS  Google Scholar 

  • Hansen G, Vaubert D, Heron JN, Clerot D, Tempe J, Brevet J (1993) Phenotypic effects of overexpression of Agrobacterium rhizogenes T-DNA ORF13 in transgenic tobacco plants are mediated by diffusible factor(s). Plant J 4:581–585

    Article  CAS  Google Scholar 

  • Hansen G, Das A, Chilton MD (1994a) Constitutive expression of the virulence genes improves the efficiency of plant transformation by Agrobacterium. Proc Nat Acad Sci 91:7603–7607

    Article  CAS  Google Scholar 

  • Hansen G, Vaubert D, Clerot D, Tempe J, Brevet J (1994b) A new open reading frame, encoding a putative regulatory protein, in Agrobacterium rhizogenes T-DNA. C R Acad Sci III 317:49–53

    CAS  Google Scholar 

  • Hansen G, Vaubert D, Clerot D, Brevet J (1997) Wound-inducible and organ-specific expression of ORF13 from Agrobacterium rhizogenes 8196 T-DNA in transgenic tobacco plants. Mol Gen Genet 254(3):337–343.

    Article  PubMed  CAS  Google Scholar 

  • Hasancebi S, Turgut Kara N, Cakir O, Ari S (2011) Micropropagation and root culture of Turkish endemic Astragalus chrysochlorus (Leguminosae). Turk J Bot 35:203–210

    CAS  Google Scholar 

  • Hatamoto H, Boulter ME, Shirsat AH, Croy EJ, Ellis JR (1990) Recovery of morphologically normal transgenic tobacco from hairy roots co-transformed with Agrobacterium rhizogenes and a binary vector plasmid. Plant Cell Rep 9:88–92

    Article  CAS  Google Scholar 

  • Hatta M, Beyl CA, Garton S, Diner AM (1996) Induction of roots on jujube softwood cuttings using Agrobacterium rhizogenes. J Hortic Sci 71(6):881–886

    Google Scholar 

  • Hauptmann RM, Ozias-Akins P, Vasil V, Tabaeizadeh Z, Rogers SG, Horsch RB, Vasil IK, Fraley RT (1987) Transient expression of electroporated DNA in monocotyledonous and dicotyledonous species. Plant Cell Rep 6(4):265–270

    Article  CAS  Google Scholar 

  • Henzi MX, Christey MC, McNeil DL, Davies KM (1999) Agrobacterium rhizogenes-mediated transformation of broccoli (Brasica oleracea L. var italica) with an antisense 1-aminocyclopropane-1-carboxylic acid oxidase gene. Plant Sci 143:55–62

    Article  CAS  Google Scholar 

  • Hernalsteens JP, Bytebier B, Van Montagu M (1993) Transgenic asparagus. In: Kung SD, Wu R (eds) Transgenic plants, present status and social and economic impacts, vol 2. San Diego, Academic Press pp 35–46

    Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  PubMed  CAS  Google Scholar 

  • Hildebrand E (1934) Life history of the hairy-root organism in relation to its pathogenesis on nursery apple trees. J Agric Res 48:857–885

    Google Scholar 

  • Hirotaka K, Hiroshi K (2003) Gene silencing by expression of hairpin RNA in Lotus japonicus roots and root nodules. Mol Plant Microbe Interact 16:663–668

    Article  Google Scholar 

  • Hodges LD, Cuperus J, Ream W (2004) Agrobacterium rhizogenes GALLS protein substitutes for Agrobacterium tumefaciens single- stranded DNA-binding protein VirE2. J Bacteriol 186:3065–3007

    Article  PubMed  CAS  Google Scholar 

  • Hodges LD, Vergunst AC, Neal-McKinney J, den Dulk-Ras A, Moyer DM, Hooykaas PJ, Ream W (2006) Agrobacterium rhizogenes GALLS protein contains domains for ATP binding, nuclear localization, and type IV secretion. J Bacteriol 188:8222–8230

    Article  PubMed  CAS  Google Scholar 

  • Holefors A, Xue ZT, Welander M (1998) Transformation of the apple rootstock M26 with the rolA gene and its influence on growth. Plant Sci 136:69–78

    Article  CAS  Google Scholar 

  • Hong S-B, Hwang I, Dessaux Y, Guyon P, Kim K-S, Farrand SK (1997) A T-DNA gene required for agropine biosynthesis by transformed plants is functionally and evolutionarily related to a Ti plasmid gene required for catabolism of agropine by Agrobacterium strains. J Bacteriol 179:4831–4840

    PubMed  CAS  Google Scholar 

  • Hong SB, Peebles CA, Shanks JV, San KY, Gibson SI (2006) Terpenoid indole alkaloid production by Catharanthus roseus hairy roots induced by Agrobacterium tumefaciens harboring rolABC genes. Biotechnol Bioeng 93:386–390

    Article  PubMed  CAS  Google Scholar 

  • Hoshino Y, Mii M (1998) Bialaphos stimulates shoot regeneration from hairy roots of snapdragon (Antirrhinum majus L.) transformed by Agrobacterium rhizogenes. Plant Cell Rep 17:256–261

    Google Scholar 

  • Hosokawa K, Matsuki R, Oikawa Y, Yamamura S (1997) Genetic transformation of gentian using wild-type Agrobacterium rhizogenes. Plant Cell Tiss Org Cult 51:137–140

    Google Scholar 

  • Hosoki T, Shiraishi K, Kigo T, Ando M (1989) Transformation and regeneration of ornamental kale (Brassica oleracea var. Acephala DC) mediated by Agrobacterium rhizogenes. Sci Hort 40:259–266

    Google Scholar 

  • Hu ZB, Du M (2006) Hairy root and its application in plant genetic engineering. J Int Plant Biol 48:121–127

    Article  CAS  Google Scholar 

  • Huffman GA, White FF, Gordon MP, Nester EW (1984) Hairy-root-inducing plasmid: physical map and homology to tumor-inducing plasmids. J Bacteriol 157:269–276

    PubMed  CAS  Google Scholar 

  • Hwang CF, Bhakta AV, Truesdell GM, Pudlo WM, Williamson VM (2000) Evidence for a role of the N terminus and leucine-rich repeat region of the Mi gene product in regulation of localized cell death. Plant Cell 12:1319–1329

    PubMed  CAS  Google Scholar 

  • Inze D, Follin A, Van Lijsebettens M, Simoens C, Genetello C, Van Montagu M, Schell J (1984) Genetic analysis of the individual T-DNA genes of Agrobacterium tumefaciens; further evidence that two genes are involved in indole-3-acetic acid synthesis. Mol Gen Genet 194:265–274

    Article  CAS  Google Scholar 

  • Ishizaki T, Hoshino Y, Masuda K, Oosawa K (2002) Explants of Ri-transformed hairy roots of spinach can develop embryogenic calli in the absence of gibberellic acid, an essential growth regulator for induction of embryogenesis from nontransformed roots. Plant Sci 163:223–231

    Article  CAS  Google Scholar 

  • Isogai A, Fukuchi N, Hayashi M, Kamada H, Harada H, Suzuki A (1988) Structure of a new opine, mikimopine, in hairy root induced by Agrobacterium rhizogenes. Agric Bio and Chem 52:3235–3237

    Article  CAS  Google Scholar 

  • Jacobs M, Rubery PH (1988) Naturally occurring auxin transport regulators. Science 241:346–349

    Article  PubMed  CAS  Google Scholar 

  • James C (2006) Global Status of Commercialized Biotech/GM Crops: 2006. ISAAA Briefs No. 35. ISAAA (International Service for the Acquisition of Agri-Biotech Applications). Ithaca, New York

    Google Scholar 

  • Jouanin L (1984) Restriction map of an agropine-type Ri plasmid and its homologies to Ti plasmids. Plasmid 12:91–102

    Article  PubMed  CAS  Google Scholar 

  • Jouanin L, Guerche P, Pamboukdjian N, Tourneur C, Casse Delbart F, Tourneur J (1987a) Structure of T-DNA in plants regenerated from roots transformed by Agrobacterium rhizogenes strain A4. Mol Gen Genet 206(3):387–392

    Article  CAS  Google Scholar 

  • Jouanin L, Vilaine F, Tourneur J, Tourneur C, Pautot V, Muller JF, Caboche M (1987b) Transfer of a 4.3-kb fragment of the TL-DNA of Agrobacterium rhizogenes strain A4 confers the pRi-transformed phenotype to regenerated tobacco plants. Plant Sci 53:53–63

    Article  CAS  Google Scholar 

  • Kärkönen A, Koutaniemi S, Mustonen M, Syrjänen K, Brunow G, Kilpeläinen I, Teeri TH, Simola LK (2002) Lignification related enzymes in Picea abies suspension cultures. Physiol Plant 114:343–353

    Google Scholar 

  • Keil M (2002) Fine chemicals from plants. In: Marja K, Caldentey KM, Barz W (eds) Plant biotechnology and transgenic plants. Marcel Dekker Inc, New York, pp 1–20

    Google Scholar 

  • Keller CP, Van Volkenburgh E (1998) Evidence that auxin-induced growth of tobacco leaf tissues does not involve cell wall acidification. Plant Physiol 118:557–564

    Article  PubMed  CAS  Google Scholar 

  • Kersters K, De Ley J (1984) Genus III Agrobacterium Conn 1942 In Bergey’s Manual of Systematic Bacteriology, vol 1. In: Krieg NR, Holt JG (eds) Baltimore: Williams & Wilkins, pp 244–254

    Google Scholar 

  • Kifle S, Shao M, Jung C, Cai D (1999) An improved transformation protocol for studying gene expression in hairy roots of sugar beet (Beta vulgaris L). Plant Cell Rep 18:514–519

    Article  CAS  Google Scholar 

  • Kim YJ, Weathers PJ, Wyslouzil BE (2002) The growth of Artemisia annua hairy roots in liquid and gas phase reactors. Biotechnol Bioeng 80:454–464

    Article  PubMed  CAS  Google Scholar 

  • Kim YK, Hui X, Park WT, Park NI, Young LS, Park SU (2010) Genetic transformation of buckwheat (Fagopyrum esculentum M.) with Agrobacterium rhizogenes and production of rutin in transformed root cultures. Aust J Crop Sci 4(7):485–490

    Google Scholar 

  • Kiselev KV, Dubrovina AS, Veselova MV, Bulgakov VP, Fedoreyev SA, Zhuravlev YN (2007) The rolB gene-induced overproduction of resveratrol in Vitis amurensis transformed cells. J Biotechnol 128:681–692

    Article  PubMed  CAS  Google Scholar 

  • Kiyokawa S, Kobayashi K, Kikuchi Y, Kamada H, Harada H (1994) Root-inducing of mikimopine type Ri plasmid pRi1724. Plant Physiol 104:801–802

    Article  PubMed  CAS  Google Scholar 

  • Kiyokawa S, Kikuchi Y, Kamada H, Harada H (1996) Genetic transformation of Begonia tuberhybrida by Ri rol genes. Plant Cell Rep 15:606–609

    Article  CAS  Google Scholar 

  • Klee HJ, Horsch RB, Hinchee MA, Hein MB, Hoffmann NL (1987) The effect of over production of two Agrobacterium tumefaciens T-DNA auxin biosynthetic gene products in transgenic Petunia plants. Genes Dev 1:86–89

    Article  CAS  Google Scholar 

  • Koltunow AM, Johnson SD, Lynch M, Yoshihara T, Costantino P (2001) Expression of rolB in apomictic Hieracium piloselloides Vill. causes ectopic meristems in planta and changes in ovule formation, where apomixis initiates at higher frequency. Planta 214:196–205

    Article  PubMed  CAS  Google Scholar 

  • Krolicka A, Staniszewska II, Bielawski K, Malinski E, Szafranek J, Lojkowska E (2001) Establishment of hairy root cultures of Ammi majus. Plant Sci 160:259–264

    Article  PubMed  CAS  Google Scholar 

  • Kuiper HA, Kleter GA, Noteborn HPJM, Kok EJ (2001) Assessment of the food safety issues related to genetically modified foods. The Plant J 27(6):503–528

    Article  CAS  Google Scholar 

  • Kumar V, Sharma A, Prasad BCN, Gururaj HB, Ravishankar GA (2006) Agrobacterium rhizogenes mediated genetic transformation resulting in hairy root formation is enhanced by ultrasonication and acetosyringone treatment. Electron J Biotech 9(4):349–357

    Google Scholar 

  • Lahners K, Byrne MC, Chilton MD (1984) T-DNA fragments of hairy root plasmid pRi8196 are distantly related to octopine and nopaline Ti plasmid T-DNA. Plasmid 11:130–140

    Article  PubMed  CAS  Google Scholar 

  • Lambert C, Tepfer D (1992) Use of Agrobacterium rhizogenes to create transgenic apple trees having an altered organogenic response to hormones. Theor Appl Genet 85:105–109

    Article  CAS  Google Scholar 

  • Lan XZ, Quan H (2010) Hairy root culture of Przewalskia tangutica for enhanced production of pharmaceutical tropane alkaloids. J Med Plants Res 4:1477–1481

    Google Scholar 

  • Leach F, Aoyagi K (1991) Promoter analysis of the highly expressed rolC and rolD root-inducing genes of Agrobacterium rhizogenes: enhancer and tissue-specific DNA determinants are dissociated. Plant Sci 79:69–76

    Article  CAS  Google Scholar 

  • Lee NG, Stein B, Suzuki H, Verma DPS (1993) Expression of antisense nodulin-35 RNA in Vigna aconitifolia transgenic root nodules retards peroxisome development and affects nitrogen availability to the plant. Plant J 3:599–606

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Blackhall NW, Power JB, Cocking EC, Tepfer D, Davey MR (2001) Genetic and morphological transformation of rice with the rolA gene from the Ri TL-DNA of Agrobacterium rhizogenes. Plant Sci 161:917–925

    Article  CAS  Google Scholar 

  • Lemcke K, Schmulling T (1998) Gain of function assays identify non-rol genes from Agrobacterium rhizogenes TL-DNA that alter plant morphogenesis or hormone sensitivity. Plant J 15(3):423–433

    Article  PubMed  CAS  Google Scholar 

  • Lemcke K, Prinsen E, Van Onckelen H, Schmülling T (2000) The ORF8 gene product of Agrobacterium rhizogenes TL-DNA has tryptophan 2-monooxygenase activity. Mol Plant Microbe Interact 13:787–790

    Article  PubMed  CAS  Google Scholar 

  • Lessard PA, Kulaveerasingam H, York GM, Strong A, Sinskey AJ (2002) Manipulating gene expression for the metabolic engineering of plants. Metab Eng 4:67–79

    Article  PubMed  CAS  Google Scholar 

  • Levesque H, Delepelaire P, Rouze P, Slightom J, Tepfer D (1988) Common evolutionary origin of the central portions of the Ri TL-DNA of Agrobacterium rhizogenes and the Ti TL-DNAs of Agrobacterium tumefaciens. Plant Mol Biol 11:731–744

    Article  CAS  Google Scholar 

  • Li N, Huxtable S, Yang SF, Kung SD (1996) Effects of N-terminal deletions on 1-minocyclopropane-1-carboxylate synthase activity. FEBS Lett 378:286–290

    Google Scholar 

  • Li D, Zhang Y, Hu X, Shen X, Ma L, Su Z, Wang T, Dong J (2011) Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses. BMC Plant Biology 11:109–138

    Article  PubMed  CAS  Google Scholar 

  • Limami A, Sun LY, Douat C, Helgeson J, Tepfer D (1998) Natural genetic transformation by Agrobacterium rhizogenes. Plant Physiol 118:543–550

    Article  PubMed  CAS  Google Scholar 

  • Lin HW, Kwok KH, Doran PM (2003) Production of podophyllotoxin using cross-species coculture of Linum flavum hairy roots and Podophyllum hexandrum cell suspensions. Biotechnol Bioeng 19:1417–1426

    Google Scholar 

  • Lorence A, Medina-Bolivar F, Nessler CL (2004) Camptothecin and 10-hydroxycamptothecin from Camptotheca acuminata hairy roots. Plant Cell Rep 22:437–441

    Google Scholar 

  • Luczkiewicz M, Kokotkiewicz A (2005) Genista tinctoria hairy root cultures for selective production of isoliquiritigenin. Z Naturforsch 60c:867–875

    Google Scholar 

  • MacRae S, Van Staden J (1993) Agrobacterium rhizogenes-mediated transformation to improve rooting ability of eucalypts. Tree Physiol 12:411–418

    Article  PubMed  Google Scholar 

  • Manners JM, Way H (1989) Efficient transformation with regeneration of the tropical pasture legume Stylosanthes humilis using Agrobacterium rhizogenes and a Ti plasmid-binary vector system. Plant Cell Rep 8:341–345

    Article  CAS  Google Scholar 

  • Martin-Tanguy J (2001) Metabolism and function of polyamines in plants: recent development (new approaches). Plant Growth Regul 34:135–148

    Article  CAS  Google Scholar 

  • Martin-Tanguy J, Sun LY, Burtin D, Vernoy R, Rossin N, Tepfer D (1996) Attenuation of the phenotype caused by the root-inducing, left-hand, transferred DNA and its rolA gene. Plant Physiol 111:259–267

    PubMed  CAS  Google Scholar 

  • Matsumoto K, Cabral GB, Teixeira JB, Monte DC (2009) Agrobacterium-mediated transient expression system in banana immature fruits. Afr J Biotechnol 8(17):4039–4042

    CAS  Google Scholar 

  • Maurel C, Barbier-Brygoo H, Spena A, Tempe J, Guern J (1991) Single rol genes from the Agrobacterium rhizogenes TL-DNA alter some of the cellular responses to auxin in Nicotiana tabacum. Plant Physiol 97(1):212–216

    Article  PubMed  CAS  Google Scholar 

  • Maurel C, Leblanc N, Barbier-Brygoo H, Perrot-Rechenmann C, Bouvier-Durand M, Guern J (1994) Alterations of auxin perception in rolB-transformed tobacco protoplasts (time course of rolB mRNA expression and increase in auxin sensitivity reveal multiple control by auxin). Plant Physiol 105:1209–1215

    Article  PubMed  CAS  Google Scholar 

  • Mauro ML, Trovato M, Paolis AD, Gallelli A, Costantino P, Altamura MM (1996) The plant oncogene rolD stimulates flowering in transgenic tobacco plants. Dev Biol 180:693–700

    Article  PubMed  CAS  Google Scholar 

  • Mayo O (1987) The theory of plant breeding, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  • McCullen CA, Binns AN (2006) Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annu Rev Cell Dev Biol 22:101–127

    Article  PubMed  CAS  Google Scholar 

  • McInnes E, Morgan AJ, Mulligan BJ, Davey MR (1991) Phenotypic effects of isolated pRiA4 TL-DNA rol genes in the presence of intact TR-DNA in transgenic plants of Solanum dulcamara L. J Exp Bot 42(10):1279–1286

    Article  CAS  Google Scholar 

  • Medford J, Horgan R, El-Sawi Z, Klee HJ (1989) Alterations of endogenous cytokinins in transgenic plants using a chimeric isopentenyl transferase gene. Plant Cell 1:403–413

    PubMed  CAS  Google Scholar 

  • Medina-Bolivar F, Condori J, Rimando AM, Hubstenberger J, Shelton K, O’Keefe SF, Bennett S, Dolan MC (2007) Production and secretion of resveratrol in hairy root cultures of peanut. Phytochemistry 68:1992–2003

    Google Scholar 

  • Mehrotra S, Kukreja AK, Kumar A, Khanuja SPS, Mishra BN (2008) Genetic transformation studies and scale up of hairy root culture of Glycyrrhiza glabra in bioreactor. Electron J Biotech 11(2):15

    Google Scholar 

  • Messner B, Boll M (1993) Elicitor-mediated induction of enzymes of ligninbiosynthesis and formation of lignin-like material in a cell suspension culture of spruce (Picea abies). Plant Cell Tiss Org 34:261–269

    Article  CAS  Google Scholar 

  • Meyer A, Tempe J, Costantino P (2000) Hairy root: a molecular overview functional analysis of Agrobacterium rhizogenes T-DNA genes. In: Stacey G, Keen N (eds) Plant-microbe interactions, vol 5. APS Press, Minnesota, pp 93–139

    Google Scholar 

  • Miflin B (2000) Crop improvement in the 21st century. J Exp Biol 51(342):1–8

    CAS  Google Scholar 

  • Mihaljevic S, Stipkovic S, Jelaska S (1996) Increase of root induction in Pinus nigra explants using Agrobacteria. Plant Cell Rep 15:610–614

    Article  CAS  Google Scholar 

  • Milly PCD, Dunne KA, Vecchia AV (2005) Global patterns of trends in streamflow and water availability in a changing climate. Nature 438:347–350

    Article  PubMed  CAS  Google Scholar 

  • Mishra BN, Ranjan R (2008) Growth of hairy-root cultures in various bioreactors for the production of secondary metabolites. Biotechnol Appl Biochem 49:1–10

    Article  PubMed  CAS  Google Scholar 

  • Momčilović I, Grubišić D, Kojić M, Nešković M (1997) Agrobacterium rhizogenes -mediated transformation and plant regeneration of four Gentiana species. Plant Cell Tiss Org Organ Cult 50(1):1–6

    Google Scholar 

  • Morgan AJ, Cox PN, Turner DA, Peel E, Davey MR, Gartland KMA, Mulligan BJ (1987) Transformation of tomato using an Ri plasmid vector. Plant Sci 49:37–49

    Google Scholar 

  • Moriguchi K, Maeda Y, Satou M, Hardayani NS, Kataoka M, Tanaka N, Yoshida K (2001) The complete nucleotide sequence of a plant root-inducing (Ri) plasmid indicates its chimeric structure and evolutionary relationship between tumor-inducing (Ti) and symbiotic (Sym) plasmids in Rhizobiaceae. J Mol Biol 307:771–784

    Article  PubMed  CAS  Google Scholar 

  • Moritz T, Schmülling T (1998) The gibberellin content of rolA transgenic tobacco plants is specifically altered. J Plant Physiol 153:774–776

    Article  CAS  Google Scholar 

  • Moyano E, Fornalé S, Palazón J, Cusidó RM, Bonfill M, Morales C, Piñol MT (1999) Effect of Agrobacterium rhizogenes T-DNA on alkaloid production in Solanaceae plants. Phytochemistry 52(7):1287–1292

    Google Scholar 

  • Mugnier AJ (1988) Establishment of new axenic hairy root lines by inoculation with Agrobacterium rhizogenes. Plant Cell Rep 7:9–12

    Article  Google Scholar 

  • Mugnier J (1997) Mycorrhizal interactions and the effects of fungicides, nematicides and herbicides on hairy root cultures. In: Doran PM (ed) Hairy roots: culture and applications. Harwood Academic Publishers, Amsterdam, pp 123–132

    Google Scholar 

  • Murugesan S, Manoharan C, Vijayakumar R, Panneerselvam A (2010) Isolation and characterization of Agrobacterium rhizogenes from the root nodules of some leguminous. Intl J Microbiol Res 1(3):92–96

    Google Scholar 

  • Nader BL, Taketa AT, Pereda-Miranda R, Villarreal ML (2006) Production of triterpenoids in liquid-cultivated hairy roots of Galphimia glauca. Planta Med 72:842–844

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Handa T, Oono Y, Kanaya K, Michikawa M, Uchimiya H (1988) Organ-specific mRNA in transgenic tobacco plants possessing T-DNA of Ri plasmids. Plant Sci 56:213–218

    Article  CAS  Google Scholar 

  • Nakano M, Hoshino Y, Mii M (1994) Regeneration of transgenic plants of grape vine (Vitis vinifera L.) via Agrobacterium rhizogenes mediated transformation of embryogenic calli. J Exp Bot 45(274):649–656

    Article  CAS  Google Scholar 

  • Nandakumar R, Suzanne LC, Rogers MD (2005) Agrobacterium-mediated transformation of the wetland monocot Typha latifolia L (Broadleaf cattail). Plant Cell Rep 23:744–750

    Article  PubMed  CAS  Google Scholar 

  • Navarrete GE, Affantranger XAl, Olivares JE, Camino CD, Santana O, Murillo E, Guillen G, Guevara NS, Acosta J, Quinto C, Li D, Gresshoff PM, Sanchez F (2006) Agrobacterium rhizogenes transformation of the phaseolus spp.: a tool for functional genomics. Mol Plant Microbe Interact 19(12):1385–1393

    Article  CAS  Google Scholar 

  • Nemoto K, Hara M, Suzuki M, Seki H, Oka A, Muranaka T, Mano Y (2009) Function of the aux and rol genes of the Ri plasmid in plant cell division in vitro. Plant Signal Behav 4(12):1145–1147

    Article  PubMed  CAS  Google Scholar 

  • Nenz E, Pupilli F, Paolocci F, Damiani F, Cenci CA, Arcioni S (1996) Plant regeneration and genetic transformation of Lotus angustissimus. Plant Cell Tiss Organ Cult 45:145–152

    Google Scholar 

  • Nilsson O, Crozier A, Schmülling T, Sandberg G, Olsson O (1993a) Indole-3-acetic acid homeostasis in transgenic tobacco plants expressing the Agrobacterium rhizogenes rolB gene. Plant J 3:681–689

    Article  CAS  Google Scholar 

  • Nilsson O, Moritz T, Imbault N, Sandberg G, Olsson O (1993b) Hormonal characterization of transgenic tobacco plants expressing the rolC gene of Agrobacterium rhizogenes TL-DNA. Plant Physiol 102:363–371

    CAS  Google Scholar 

  • Nilsson O, Little CH, Sandberg G, Olsson O (1996a) Expression of two heterologous promoters, Agrobacterium rhizogenes rolC and cauliflower mosaic virus 35S, in the stem of transgenic hybrid aspen plants during the annual cycle of growth and dormancy. Plant Mol Biol 31:887–895

    Article  CAS  Google Scholar 

  • Nilsson O, Moritz T, Sundberg B, Sandberg G, Olsson O (1996b) Expression of the Agrobacterium rhizogenes rolC gene in a deciduous forest tree alters growth and development and leads to stem fasciation. Plant Physiol 112:493–502

    CAS  Google Scholar 

  • Nilsson O, Olsson O (1997) Getting to the root: the role of the Agrobacterium rhizogenes rol genes in the formation of hairy roots. Physiol Plant 100:463–473

    Article  CAS  Google Scholar 

  • Noda T, Tanaka N, Mano Y, Nabeshima S, Ohkawa H, Matsui C (1987) Regeneration of horseradish hairy roots incited by Agrobacterium rhizogenes infection. Plant Cell Rep 6:283–286

    Google Scholar 

  • Ohara A, Akasaka Y, Daimon H, Mii M (2000) Plant regeneration from hairy roots induced by infection with Agrobacterium rhizogenes in Crotalaria juncea L. Plant Cell Rep 19:563–568

    Article  CAS  Google Scholar 

  • Oksman-Caldentey KM, KivelaÈ O, Hiltunen R (1991) Spontaneous shoot organogenesis and plant regeneration from hairy root cultures of Hyoscyamus muticus. Plant Sci 78:129–136

    Google Scholar 

  • Olempska-Beer ZWS, Merker RI, Ditto MD, DiNovi MJ (2006) Food-processing enzymes from recombinant microorganisms-a review. Regul Toxicol Pharmacol 45:144–158

    Article  PubMed  CAS  Google Scholar 

  • Olhoft PM, Bernal LM, Grist LB, Hill DS, Mankin SL, Shen Y, Kalogerakis M, Wiley H, Toren E, Song H-S, Hillebrand H, Jones T (2007) A novel Agrobacterium rhizogenes-mediated transformation method of soybean [Glycine max (L.) Merrill] using primary-node explants from seedlings. In Vitro Cell Dev Biol Plant 43:536–549

    Article  CAS  Google Scholar 

  • Ondrej M, Biskova R (1986) Differentiation of Petunia hybrida tissues transformed by Agrobacterium rhizogenes and Agrobacterium tumefaciens. Biol Plant 28:152–155

    Google Scholar 

  • Ooms G, Twell D, Bossen ME, Hoge JHC, Burrell MM (1986) Developmental regulation of RI TL-DNA gene expression in roots, shoots and tubers of transformed potato (Solanum tuberosum cv. Desiree). Plant Mol Biol 6:321–330

    Article  CAS  Google Scholar 

  • Oono Y, Kanaya K, Uchimiya H (1990) Early flowering in transgenic tobacco plants possessing the rolC gene of Agrobacterium rhizogenes Ri plasmid. Jpn J Genet 68:7–16

    Google Scholar 

  • Oono Y, Handa T, Kanaya K, Uchimiya H (1987) The TL-DNA gene of Ri plasmids responsible for dwarfness of tobacco plants. Jpn J Genet 62:501–505

    Article  Google Scholar 

  • Otani M, Mu M, Handa T, Kamada H, Shimada T (1993) Transformation of sweet potato (Ipomoea batatus (L.) Lam.) plants by Agrobacterium rhizogenes. Plant Sci 94:151–159

    Article  CAS  Google Scholar 

  • Otten L, Helfer A (2001) Biological activity of the rolB-like 5ʹ end of the A4-ORF8 gene from the Agrobacterium rhizogenes TL -DNA. Mol Plant Microbe Interact 14:405–411

    Article  PubMed  CAS  Google Scholar 

  • Ouartsi A, Clerot D, Meyer A, Dessaux Y, Brevet J, Bonfill M (2004) The T-DNA ORF8 of the cucumopine-type Agrobacterium rhizogenes Ri plasmid is involved in auxin response in transgenic tobacco. Plant Sci 166:557–567

    Article  CAS  Google Scholar 

  • Ozyigit II (2012) Agrobacterium tumefaciens and its use in plant biotechnology. In: Ashraf M, Ozturk M, Ahmad MSA, Aksoy A (eds) Crop production for agricultural improvement. Springer, The Netherlands, pp 317–361

    Chapter  Google Scholar 

  • Özcan S, Uranbey S, Sancak C, Parmaksiz İ, Gürel E, Babaoğlu M (2004) Agrobacterium aracılığıyla gen aktarımı. In: Özcan S, Gürel E, Babaoğlu M (eds) Bitki Biyoteknolojisi II (Plant biotechnology, II), Genetik Mühendisliği ve Uygulamaları (Genetic engineering and its applications), Cilt II, 2nd edn. SÜ Vakfi Yayınlari, Turkey, pp 112–159

    Google Scholar 

  • Pal A., Swain SS, Mukherjee AK, Chand PK (2012) Agrobacterium pRi TL-DNA rolB and TR-DNA opine genes transferred to the spiny Amaranth (Amaranthus spinosus L.)—A nutraceutical crop. Food Technol Biotech (In press)

    Google Scholar 

  • Palazon J, Cusido RM, Roig C, Pinol MT (1998) Expression of the rol gene and nicotine production in transgenic hairy roots and their regenerated plants. Plant Cell Rep 17:384–90

    Article  CAS  Google Scholar 

  • Park Nl, JK Kim, WT Park, JW Cho, YP Lim, SU Park (2011) An efficient protocol for genetic transformation of watercress (Nasturtium officinale) using Agrobacterium rhizogenes. Mol Biol Rep 38:4947–4953

    Article  PubMed  CAS  Google Scholar 

  • Pavingerova D, Ondrej M (1986) Comparison of hairy root and crown gall tumors of Arabidopsis thaliana. Biol Plant 28:149–151

    Google Scholar 

  • Pellegrineschi A, Davolio-Mariani O (1996) Agrobacterium rhizogenes-mediated transformation of scented geranium. Plant Cell Tiss Organ Cult 47:79–86

    Google Scholar 

  • Pellegrineschi A, Damon JP, Valtorta N, Paillard N, Tepfer D (1994) Improvement of ornamental characters and fragrance production in lemon-scented geranium through genetic transformation by Agrobacterium rhizogenes. Nat Biotechnol 12:64–68

    Article  CAS  Google Scholar 

  • Pérez-Molphe-Balch E, Ochoa-Alejo N (1998) Regeneration of transgenic plants of Mexican lime from Agrobacterium rhizogenes-transformed tissues. Plant Cell Rep 17:591–596

    Article  CAS  Google Scholar 

  • Petersen SG, Stummann BM, Olesen P, Henningsen KW (1989) Structure and function of root-inducing (Ri) plasmids and their relation to tumor-inducing (Ti) plasmids. Physiol Plantarum 77:427–435

    Article  CAS  Google Scholar 

  • Petit A, David C, Dahl G, Ellis JG, Guyon P, Casse-Delbart FC, Tempe J (1983) Further extension of the opine concept: plasmids in Agrobacterium rhizogenes cooperate for opine degradation. Mol Gen Genet 19:204–214

    Article  Google Scholar 

  • Phelep M, Petit A, Martin L, Duhoux E, Tempe J (1991) Transformation and regeneration of a nitrogen-fixing tree, Allocasuarina verticillata Lam. Biotechnol 9:461–466

    Article  CAS  Google Scholar 

  • Popa G, Cornea C P, Brezeanu A (2006) Influence of different Agrobacterium rhizogenes strains on hairy roots induction in Eustoma grandiflorum. Roum Biotechnol Lett 11(1):2587–2592

    CAS  Google Scholar 

  • Porter J (1991) Host range and implications of plant infection by Agrobacterium rhizogenes. Crc Cr Rev Plant Sci 10:387–421

    Article  Google Scholar 

  • Pradel H, Dumke-Lehmann U, Dietrich B, Luckner M (1997) Hairy root cultures of Digitalis lanata. Secondary metabolism and plant regeneration. J Plant Physiol 151:209–215

    Google Scholar 

  • Prinsen E, Bytebier B, Hernalsteens JP, De Greef J, Van Onckelen H (1990) Functional expression of Agrobacterium tumefaciens T-DNA onc-genes in Asparagus crown gall tissues. Plant Cell Physiol 31:69–75

    CAS  Google Scholar 

  • Prinsen E, Chriqui D, Vilaine F, Tepfer M, Van Onckelen H (1994) Endogenous phytohormones in tobacco plants transformed with Agrobacterium rhizogenes pRi TL-DNA genes. Plant Physiol 144:80–85

    Article  CAS  Google Scholar 

  • Putalun W, Udomsin O, Yusakul G, Juengwatanatrakul T, Sakamoto S, Tanaka H (2010) Enhanced plumbagin production from in vitro cultures of Drosera burmanii using elicitation. Biotechnol Lett 32:721–724

    Google Scholar 

  • Quandt HJ, Pühler A, Broer I (1993) Transgenic root nodules of Vicia hirsuta a fast and efficient system for the study of gene expression in indeterminate-type nodules. Mol Plant Microbe Interact 6:699–706

    Article  Google Scholar 

  • Ramsay G, Kumar A (1990) Transformation of Vicia faba cotyledon and stem tissues Agrobacterium rhizogenes: infectivity and cytological studies. J Exp Bot 41:841–847

    Article  Google Scholar 

  • Rao AQ, Bakhsh A, Kiani S, Shahzad K, Shahid AA, Husnain T, Riazuddin S (2009) The myth of plant transformation. Biotechnol Adv 27:753–763

    Article  PubMed  Google Scholar 

  • Rao SR, Ravishankar G (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153

    PubMed  CAS  Google Scholar 

  • Ream W (2002) Agrobacterium genetics. In: Streips UN, Yasbin RE (eds) Modern Microbial Genetics, 2nd edn. Wille-Liss Inc., New York, pp 323–348

    Chapter  Google Scholar 

  • Rech EL, Golds TJ, Husnain T, Vainstein MH, Jones B, Hammat N, Mulligan BJ, Davey MR (1989) Expression of a chimaeric kanamycin resistance gene introduced into the wild soybean Glycine canescens using a cointegrate Ri plasmid vector. Plant Cell Rep 8:33–36

    Article  CAS  Google Scholar 

  • Remeeus PM, van Bezooijen J, Wijbrandi J, van Bezooijen J (1998) In vitro testing is a reliable way to screen the temperature sensitivity of resistant tomatoes against Meloidogyne incognita. In: Proceedings of 5th international symposium on crop protection, Universiteit Gent Belgium, vol 63, pp 635–640

    Google Scholar 

  • Riker AJ, Banfield WM, Wright WH, Keitt GW (1930) Studies on infectious hairy root of nursery apple trees. J Agric Res 41:507–540

    Google Scholar 

  • Rinallo C, Mittempergher L, Frugis G, Mariotti D (1999) Clonal propagation in the genus Ulmus: improvement of rooting ability by Agrobacterium rhizogenes T-DNA genes. J Hortic Sci Biotechnol 74:502–506

    Google Scholar 

  • Rossi L, Hohn B, Tinland B (1996) Integration of complete transferred DNA units is dependent on the activity of virulence E2 protein of Agrobacterium tumefaciens. Proc Natl Acad Sci USA 93:126–130

    Article  PubMed  CAS  Google Scholar 

  • Rugh CL (2001) Mercury detoxification with transgenic plants and other biotechnological breakthroughs for phytoremediation. In Vitro Cell Dev Biol Plant 37:321–325

    Article  CAS  Google Scholar 

  • Rugini E, Mariotti D (1991) Agrobacterium rhizogenes T-DNA genes and rooting in woody species. Acta Hort 300:301–307

    Google Scholar 

  • Rugini E, Pellegrineschi A, Mencuccini M, Mariotti D (1991) Increase of rooting ability in the woody species kiwi (Actinidia deliciosa A. Chev.) by transformation with Agrobacterium rhizogenes rol genes. Plant Cell Rep 10:291–295

    Article  CAS  Google Scholar 

  • Rugini E, Muganu M, Gutiérrez-Pesce P E, Lolletti D (1996) Comportamento vegeto-produttivo di alcune specie fruttifere transgeniche per il T-DNA e geni rol di Agrobacterium rhizogenes. Convegno SIGA, Workshop Organismi geneticamente modificati e resistenze genetiche, Bologna, pp 55–57

    Google Scholar 

  • Ryder MH, Tate ME, Kerr A (1985) Virulence properties of strains of Agrobacterium on the apical and basal surfaces of carrot root discs. Plant Physiol 77:215–221

    Article  PubMed  CAS  Google Scholar 

  • Saha P, Chakraborti D, Sarkar A, Dutta I, Basu D, Das S (2007) Characterization of vascularspecific RSs1 and rolC promoters for their utilization in engineering plants to develop resistance against hemipteran insect pests. Planta 226:429–442

    Article  PubMed  CAS  Google Scholar 

  • Saito K, Yamazaki M, Anzai H, Yoneyama K, Murakoshi I (1992) Transgenic herbicide-resistant Atropa belladonna using an Ri plasmid vector and inheritance of the transgenic trait. Plant Cell Rep 11:219–224

    CAS  Google Scholar 

  • Satheeshkumar K, Jose B, Sonia EV, Seeni S (2009) Isolation of morphovariants through plant regeneration in A. rhizogenes induced hairy root cultures of Plumbago rosea L. Indian J Biotechnol 8:435–441

    CAS  Google Scholar 

  • Savka MA, Ravillion B, Noel GR, Farrand SK (1990) Induction of hairy roots on cultivated soybean genotypes and their use to propagate the soybean cyst nematode. Phytopathology 80(5):503–508.

    Article  Google Scholar 

  • Schmulling T, Schell J, Spena A (1988) Single genes from Agrobacterium rhizogenes influence plant development. EMBO J 7:2621–2629

    PubMed  CAS  Google Scholar 

  • Schmülling T, Fladung M, Grossmann K, Schell J (1993) Hormonal content and sensitivity of transgenic tobacco and potato plants expressing single rol genes of Agrobacterium rhizogenes T-DNA. Plant J 3:371–382

    Article  Google Scholar 

  • Schröder G, Waffenschmidt S, Weiler E, Schröder J (1984) The region of Ti plasmid codes for an enzyme synthesizing indole-3-acetic acid. Eur J Biochem 138:387–391

    Article  Google Scholar 

  • Scorza R, Zimmerman TW, Cordts JM, Footen KJ (1994) Horticultural characteristics of transgenic tobacco expressing the rolC gene from Agrobacterium. J Amer Soc Hort Sci 119(5):1091–1098

    CAS  Google Scholar 

  • Sentoku N, Sato Y, Matsuoka M (2000) Overexpression of rice OSH genes induces ectopic shoots on leaf sheaths of transgenic rice plants. Dev Biol 220:358–364

    Article  PubMed  CAS  Google Scholar 

  • Sevon N, Oksman-Caldentey KM (2002) Agrobacterium rhizogenes mediated transformation: root cultures as a source of alkaloids. Planta Med 68:859–868

    Article  PubMed  CAS  Google Scholar 

  • Shahin EA, Sukhapinda K, Simpson RB, Spivey R (1986) Transformation of cultivated tomato by a binary vector in Agrobacterium rhizogenesis: transgenic plants with normal phenotypes harbor binary vector T-DNA but no Ri-plasmid T-DNA. Theor Appl Genet 72:770–777

    Article  CAS  Google Scholar 

  • Shen WH, Petit A, Guern J, Tempe J (1988) Hairy roots are more sensitive to auxin than normal roots. Proc Natl Acad Sci 85:3417–3421

    Article  PubMed  CAS  Google Scholar 

  • Shen WH, Davioud E, David C, Barbier-Brygoo H, Tempe J, Guern J (1990) High sensitivity to auxin is a common feature of hairy root. Plant Physiol 94:554–560

    Article  PubMed  CAS  Google Scholar 

  • Shin DI, Podila GK, Huang Y, Karnosky DF (1994) Transgenic larch expressing genes for herbicide and insect resistance. Can J For Res 4:2059–2067

    Article  Google Scholar 

  • Shinde AN, Malpathak N, Fulzele PD (2009) Enhanced production of phytoestrogenic isoflavones from hairy root cultures of Psoralea corylifolia L. using elicitation and precursor feding. Biotechnol Bioprocess E 14:288–294

    Article  CAS  Google Scholar 

  • Shkryl YN, Veremeichik GN, Bulgakov VP, Tchernoded GK, Mischenko NP, Fedoreyev SA, Zhuravlev YN (2008) Individual and combined effects of the rolA, B and C genes on anthraquinone production in Rubia cordifolia transformed calli. Biotechnol Bioeng 100(1):118–125

    Article  PubMed  CAS  Google Scholar 

  • Shoja HM (2010) Contribution to the study of the Agrobacterium rhizogenes plast genes, rolB and rolC, and their homologs in Nicotiana tabacum. Universite de Strasbourg, France

    Google Scholar 

  • Sinha N, Williams R, Hake S (1993) Overexpression of the maize homeobox gene, KNOTTED-1, causes a switch from determinate to indeterminate cell fates. Genes Dev 7:787–795

    Article  PubMed  CAS  Google Scholar 

  • Sinkar V, Pythoud F, White F, Nester E, Gordon M (1988) rolA locus of the Ri plasmid directs developmental abnormalities in transgenic plants. Genes Dev 2:688–697

    Article  PubMed  CAS  Google Scholar 

  • Slightom JL, Durand-Tardif M, Jouanin L, Tepfer D (1986) Nucleotide sequence analysis of TL-DNA of Agrobacterium rhizogenes agropine type plasmid. J Biol Chem 261:108–121

    PubMed  CAS  Google Scholar 

  • Smigocki AC, Hammerschlag FA (1991) Regeneration of plants from peach embryo cells infected with a shooty mutant strain of Agrobacterium. J Amer Soc Hort Sci 116:1092–1097

    Google Scholar 

  • Smulders M JM, Croes AF, Kemp A, Hese KM, Harren F, Wullems GJ (1991) Inhibition by ethylene of auxin promotion of flower bud formation in tobacco explants is absent in plants transformed by Agrobacterium rhizogenes. Plant Physiol 96:1131–1135

    Article  PubMed  CAS  Google Scholar 

  • Spano L, Costantino P (1982) Regeneration of plants from callus cultures of roots induced by Agrobacterium rhizogenes on tobacco. Z Pflanzenphysiol 106:87–92

    Google Scholar 

  • Spano L, Mariotti D, Cardarelli M, Branca C, Costantino P (1988) Morphogenesis and auxin sensitivity of transgenic tobacco with different complements of Ri T-DNA. Plant Physiol 87(2):479–483

    Article  PubMed  CAS  Google Scholar 

  • Specq A, Hansen G, Vaubert D, Clerot D, Heron JN, Tempe J, Brevet J (1994) Studies on hairy root T-DNA: regulation and properties of ORF13 from Agrobacterium rhizogenes 8196. In Plant Pathogenic Bacteria, Versailles, pp 465–468

    Google Scholar 

  • Spena A, Schmulling T, Konct C, Schell JS (1987) Independent and synergistic activity of rolA, B and C loci in stimulating abnormal growth in plants. EMBO J 206(13):3891–3899

    Google Scholar 

  • Spiral J, Thierry C, Paillard M, Petiard V. (1993) Obtention de plantules de Coffea canephora Pierre (Robusta) transformées par Agrobacterium rhizogenes. C R Acad Sci Hebd Seances Acad Sci 316:1–6

    CAS  Google Scholar 

  • Sretenovic-Rajicic T, Ninkovi S, Miljus-Dukic J, Vinterhalter B, Vinterhalter D (2006) Agrobacterium rhizogenes-mediated transformation of Brassica oleracea var. sabauda and B. oleracea var. capitata. Biol Plant 50:525–530

    Article  CAS  Google Scholar 

  • Stieger PA, Meyer AD, Kathmann P, Fründt C, Niederhauser I, Barone M, Kuhlemeier C (2004) The orf13 T-DNA Gene of Agrobacterium rhizogenes confers meristematic competence to differentiated cells. Plant Physiol 135(3):1798–1808

    Article  PubMed  CAS  Google Scholar 

  • Stiller J, Nasinec V, Svoboda S, Nemcova B, Machackova T (1992) Effects of agrobacterial oncogenes in kidney vetch (Anthyllis vulneraria L.). Plant Cell Rep 11:363–367

    Article  CAS  Google Scholar 

  • Stiller J, Martirani L, Tuppale S, Chian RJ, Chiurazzi M, Gresshoff PM (1997) High frequency transformation and regeneration of transgenic plants in the model legume Lotus japonicus. J Exp Bot 48:1357–1365

    Article  CAS  Google Scholar 

  • Stummer BE, Smith SE, Langridge P (1995) Genetic transformation of Verticordia grandis (Myrtaceae) using wild-type Agrobacterium rhizogenes and binary Agrobacterium vectors. Plant Sci 111:51–62

    Article  CAS  Google Scholar 

  • Sudha CG, Obul Reddy B, Ravishankar GA, Seeni S (2003) Production of ajmalicine and ajmaline in hairy root cultures of Rauvolfia micrantha Hookf, a rare and endemic medicinal plant. Biotechnol Lett 25:631–636

    Article  PubMed  CAS  Google Scholar 

  • Suginuma C, Akihama T (1995) Transformation of gentian with Agrobacterium rhizogenes. Acta Hort 392:153–160

    Google Scholar 

  • Sun, L-Y, Monneuse M-O, Martin-Tanguy J, Tepfer D (1991) Changes in flowering and accumulation of polyamines and hydroxycinnamic acid-polyamine conjugates in tobacco plants transformed by the A locus from the Ri TL-DNA of Agrobacterium rhizogenes. Plant Sci 80:145–146

    Article  CAS  Google Scholar 

  • Suzuki M (1989) SPXX, a frequent sequence motif in gene regulatory proteins. J Mol Biol 207:61–84

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H, Fowler T, Tierney M (1993) Deletion analysis and localization of SbPRP1, a soybean cell wall protein gene, in roots of transgenic tobacco and cowpea. Plant Mol Biol 21:109–119

    Google Scholar 

  • Suzuki K, Tanaka N, Kamada H, Yamashita I (2001) Mikimopine synthase (mis) gene on pRi1724. Gene 263:49–58

    Article  PubMed  CAS  Google Scholar 

  • Swain SS, Rout KK, Chand PK (2012) Production of Triterpenoid Anti-cancer Compound Taraxerol in Agrobacterium-Transformed Root Cultures of Butterfly Pea (Clitoria ternatea L.). Appl Biochem Biotechnol 168(3):487–503

    Google Scholar 

  • Talano MA, Agostini E, Medina MI, Reinoso H, Tordable Mdel C, Tigier HA, de Forchetti SM (2006) Changes in lignosuberization of cell walls of tomato hairy roots produced by salt treatment with the release of a basic peroxidase. J Plant Physiol 163:740–749

    Article  PubMed  CAS  Google Scholar 

  • Tanaka N, Takao M, Matsumoto T (1994) Agrobacterium rhizogenes mediated transformation and regeneration of Vinca minor L. Plant Tiss Cult Lett 11:191–198

    Article  CAS  Google Scholar 

  • Tanaka N, Fujikawa Y, Aly MAM, Saneoka H, Fujita K, Yamashita I (2001) Proliferation and rol gene expression in hairy root lines of Egyptian clover (Trifolium alexandrinum L.). Plant Cell Tiss Org 66:175–182

    Article  CAS  Google Scholar 

  • Tao R, Handa T, Tamura M, Sugiura A (1994) Genetic transformation of Japanese persimmon (Diospyros kaki L.) by Agrobacterium rhizogenes wild type strain A4. J Jap Soc Hort Sci 63:283–289

    Google Scholar 

  • Taylor BH, Amasino RM, White EW, Gordon MP (1985) T-DNA analysis of plants regenerated from hairy root tumors. Mol Gen Genet 201: 554–557

    Article  CAS  Google Scholar 

  • Taylor NJ, Fauquet CM (2002) Microparticle bombardment as a tool in plant science and agricultural biotechnology. DNA and Cell Biol 21(12):963–977

    Article  CAS  Google Scholar 

  • Tempe J, Petit A, Farrand SK (1984) Induction of cell proliferation by Agrobacterium tumafaciens and A. rhizogenes: a parasite’s point of view D.P.S Verma and T. Hohn. Genes involved in microbe-plant interactions. Springer-Verlag, New York, pp 271–286

    Book  Google Scholar 

  • Tepfer D (1983) The potential uses of Agrobacterium rhizogenes in the genetic engineering of higher plants: nature got there first. In: Lurquin P, Kleinhofs A (eds) Genetic engineering in eukaryotes. Plenum, New York, pp 153–164

    Chapter  Google Scholar 

  • Tepfer D (1984) Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell 37:959–967

    Article  PubMed  CAS  Google Scholar 

  • Tepfer D (1990) Genetic transformation using Agrobacterium rhizogenes. Physiol Plant 79:140–146

    Article  CAS  Google Scholar 

  • Thimmaraju R, Venkatachalam L, Bhagyalakshmi N (2008) Morphometric and biochemical characterization of red beet (Beta vulgaris L.) hairy roots obtained after single and double transformations. Plant Cell Rep 27:1039–1052

    Article  PubMed  CAS  Google Scholar 

  • Thomas MR, Rose RJ, Nolan KE (1992) Genetic transformation of Medicago truncatula using Agrobacterium with genetically modified Ri and disarmed Ti plasmids. Plant Cell Rep 11:113–117

    Google Scholar 

  • Thomashow LS, Reeves S, Thomashow MF (1984) Crown gall oncogenesis: evidence that a T-DNA gene from the Agrobacterium Ti plasmid pTiA6 encodes an enzyme that catalyzes synthesis of indoleacetic acid. Proc Natl Acad Sci 81:5071–5075

    Article  PubMed  CAS  Google Scholar 

  • Tomilov A, Tomilova N, Yoder JI (2007) Agrobacterium tumefaciens and Agrobacterium rhizogenes transformed roots of the parasitic plant Triphysaria versicolor retain parasitic competence. Planta 225(5):1059–1071

    Article  PubMed  CAS  Google Scholar 

  • Trovato M, Mauro ML, Costantino P, Altamura MM (1997) The rolD gene from Agrobacterium rhizogenes is developmentally regulated in transgenic tobacco. Protoplasma 197:111–120

    Article  CAS  Google Scholar 

  • Trovato M, Maras B, Linhares F, Constantino P (2001) The plant oncogene rolD encodes a functional ornithine cyclodeaminase. Proc Natl Acad Sci 98:13449–13453

    Article  PubMed  CAS  Google Scholar 

  • Trulson AJ, Simpson RB, Shahin EA (1986) Transformation of cucumber (Cucumis sativus L.) plants with Agrobacterium rhizogenes. Theor Appl Gene 73:11–15

    Article  CAS  Google Scholar 

  • Turgut Kara N, Ari S (2008) In vitro plant regeneration from embryogenic cell suspension culture of Astragalus chrysochlorus (Leguminoseae). Afr J Biotechnol 7(9):1250–1255

    Google Scholar 

  • Turgut Kara N, Ari S (2010) The optimization of voltage parameter for tissue electroporation in somatic embryos of Astragalus chrysochlorus (Leguminosae). Afr J Biotechnol 9(29):4584–4588

    Google Scholar 

  • Tzfira T, Citovsky V (2000) From host recognition to T-DNA integration: the function of bacterial and plant genes in the Agrobacterium-plant cell interaction. Mol Plant Pathol 11(4):201–212

    Article  Google Scholar 

  • Tzfira T, Yarnitzky O, Vainstein A, Altman A (1996). Agrobacterium rhizogenes-mediated DNA transfer in Pinus halepensis Mill. Plant Cell Rep 16:26–31

    Article  CAS  Google Scholar 

  • Umber M, Clement B, Otten L (2005) The T-DNA oncogene A4- orf8 from Agrobacterium rhizogenes strain A4 induces abnormal growth in tobacco. Mol Plant Microbe Interact 18:205–211

    Article  PubMed  CAS  Google Scholar 

  • Uozumi N, Kobayashi T (1997) Artificial seed production through hairy root regeneration. In: Doran PM (ed) Hairy roots: culture and applications. Harwood Academic Publishers, Amsterdam, pp 113–122

    Google Scholar 

  • Uozumi N, Ohtake Y, Nakashimada Y, Morikawa Y, Tanaka N, Kobayashi T (1996) Efficient regeneration from GUS-transformed Ajuga hairy root. J Ferm Bioeng 81:374–378

    Google Scholar 

  • Vain P (2007) Thirty years of plant transformation technology development. Plant Biotechnol J 5:221–229

    Article  PubMed  CAS  Google Scholar 

  • van Altvorst AC, Bino RJ, van Dijk AJ, Lamers AMJ, Lindhout WH, Van Der Mark F, Dons JJM (1992) Effects of the introduction of Agrobacterium rhizogenes rol genes on tomato plant and flower development. Plant Sci 83:77–85

    Article  CAS  Google Scholar 

  • van de Velde W, Mergeay J, Holsters M, Goormachtig S (2003) Agrobacterium rhizogenes-mediated transformation of Sesbania rostrata. Plant Sci 165:1281–1288

    Article  CAS  Google Scholar 

  • van der Salm TPM, Van Der Toorn CJG, Bouwer R, Haenisch ten Cate CH, Dons HJM (1997) Production of rol gene transformed plants of Rosa hybrida L. and characterization of their rooting ability. Mol Breed 3:39–47

    Article  CAS  Google Scholar 

  • van Onckelen H, Prinsen E, Inze D, Rudelsheim P, van Lijsebettens M, Follin A, Schell J, van Montagu M, De Greef J (1986) Agrobacterium T-DNA gene codes for tryptophan 2-monooxygenase activity in tobacco crown gall cells. FEBS Lett 198:357–360

    Article  CAS  Google Scholar 

  • Vansuyt G, Vilaine F, Tepfer M, Rossingnol M (1992) rolA modulates the sensitivity to auxin of the protontranslocationcatalyzed by the plasmamembrane H+-ATPase in transformed tobacco. FEBS Lett 298:89–92

    Article  PubMed  CAS  Google Scholar 

  • Veena V, Taylor CG (2007) Agrobacterium rhizogenes: recent developments and promising applications. In Vitro Cell Dev Biol Plant 43:383–403

    Article  CAS  Google Scholar 

  • Vilaine F, Casse-Delbart F (1987) A new vector derived from Agrobacterium rhizogenes plasmids: a micro-Ri plasmid and its use to construct a mini-Ri plasmid. Gene 55(1):105–14

    Google Scholar 

  • Vilaine F, Charbonnier C, Casse-Delbart F (1987) Further insight concerning the TL-region of the Ri plasmid of Agrobacterium rhizogenes strain A4: transfer of a 1.9 kb fragment is sufficient to induce transformed roots on tobacco leaf fragments. Mol Gen Genet 210:111–115

    Article  CAS  Google Scholar 

  • Vinterhalter B, Orbović V, Vinterhalter D (1999) Transgenic root cultures of Gentiana punctata L. Acta Soc Bot Pol 4:275–280

    Google Scholar 

  • Visser RGF, Hesseling-Meinders A, Jacobsen E, Nijdam H, Witholt B, Feenstra WJ (1989) Expression and inheritance of inserted markers in binary vectors carrying Agrobacterium rhizogenes transformed potato (Solanum tuberosum L.). Theor Appl Genet 78:705–14

    CAS  Google Scholar 

  • Walton NJ, Belshaw NJ (1988) The effect of cadaverine on the formation of anabasine from lysine in hairy root cultures of Nicotiana hesperis. Plant Cell Rep 7:115–118

    Google Scholar 

  • Wang CY, Chiao MT, Yen PJ, Huang WC, Hou CC, Chien SC, Yeh KC, Yang WC, Shyur LF, Yang NS (2006) Modulatory effects of Echinacea purpurea extracts on human dendritic cells: a cell- and gene-based study. Genomics 88:801–808

    Google Scholar 

  • Ward DV, Zambryski P (2001) The six functions of Agrobacterium VirE2. Proc Natl Acad Sci USA 98:385–386

    Article  PubMed  CAS  Google Scholar 

  • Weising K, Kahl G (1996) Natural genetic engineering of plant cells: the molecular biology of crown gall and hairy root disease. World J Microbiol Biotechnol 2:327–351

    Article  Google Scholar 

  • Weller SA, Stead DE (2002) Detection of root mat associated Agrobacterium strains from plant material and other sample types by post-enrichment TaqMan PCR. J Appl Microbiol 92:118–126

    Article  PubMed  CAS  Google Scholar 

  • Weller SA, Stead DE, Young JPW (2005) Induction of root-mat symptoms on cucumber plants by Rhizobium, but not by Ochrobactrum or Sinorhizobium, harbouring a cucumopine Ri plasmid. Plant Pathol 54:799–805

    Article  CAS  Google Scholar 

  • White LO (1972) The taxonomy of the crown gall organism Agrobacterium tumefaciens and its relationship to Rhizobia and to other Agrobacterium. J Gen Microbiol 72:565–574

    Article  Google Scholar 

  • White FF, Ghidossi G, Gordon MP, Nester EW (1982) Tumor induction by Agrobacterium rhizogenes involves the transfer of plasmid DNA to the plant genome. Proc Natl Acad Sci USA 79:3193–3197

    Google Scholar 

  • White FF, Taylo BH, Huffman GA, Gordon MP, Nesterr EW (1985) Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J Bacteriol 164(1):33–44

    PubMed  CAS  Google Scholar 

  • Willems A, Collins MD (1993) Phylogenetic analysis of Rhizobia and Agrobacteria based on 16S rRNA gene sequences. Intl J Syst Bacteriol 43:305–313

    Article  CAS  Google Scholar 

  • Willmitzer L, Sanchez-Serrano J, Buschfeld E, Schell J (1982) DNA from Agrobacterium rhizogenes is transferred to and expressed in axenic hairy root plant tissues. Mol Gen Genet 186:16–22

    Article  CAS  Google Scholar 

  • Willmitzer L, Dhaese P, Schreier PH, Schmalenbach W, Van Montagu M, Schell J (1983) Size, location and polarity of T-DNA-encoded transcripts in nopaline crown gall tumors, common transcripts in octopine and nopaline tumors. Cell 32(4):1045–1056

    Article  PubMed  CAS  Google Scholar 

  • Woese CR, Gupta R, Hahn CM, Zillig W, Tu J (1984) The phylogenetic relationships of three sulfur-dependent archaebacteria. Syst Appl Microbiol 5:97–105

    Article  PubMed  CAS  Google Scholar 

  • Yadav NS, Van Der Leyden J, Bennett DR, Barnes WM, Chilton M-D (1982) Short direct repeats flank the T-DNA on a nopaline Ti plasmid. Proc Natl Acad Sci 79:6322–6326

    Article  PubMed  CAS  Google Scholar 

  • Yamada T, Palm CJ, Brooks B, Kosuge T (1985) Nucleotide sequences of the Pseudomonas savastanoi indole acetic acid gene show homology with Agrobacterium tumefaciens T-DNA. Proc Natl Acad Sci 82:6522–6526

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki M, Son L, Hayashi T, Morita N, Asamizu T, Mourakoshi I, Saito K (1996) Transgenic fertile Scoparia dulcis L., a folk medicinal plant, conferred with a herbicide-resistant trait using an Ri binary vector. Plant Cell Rep 15:317–321

    Google Scholar 

  • Yang DC, Choi YE (2000) Production of transgenic plants via Agrobacterium rhizogenes-mediated transformation of Panax ginseng. Plant Cell Rep 19(5):491–496

    Article  CAS  Google Scholar 

  • Yasuda H, Tada Y, Hayashi Y, Jomori T, Takaiwa F (2005) Expression of the small peptide GLP-1 in transgenic plants. Transgenic Res 14(5):677–684

    Article  PubMed  CAS  Google Scholar 

  • Yibrah HS, Grönroos R, Lindroth A, Franzén H, Clapham D, von Arnold S (1996) Agrobacterium rhizogenes-mediated induction of adventitious rooting from Pinus contorta hypocotyls and the effect of 5-azacytidine on transgene activity. Transgenic Res 5:75–85

    Article  CAS  Google Scholar 

  • Yokoyama R, Hirose T, Fujii N, Aspuria ET, Kato A, Uchimiya H (1994) The rolC promoter of Agrobacterium rhizogenes Ri plasmid is activated by sucrose in transgenic tobacco plants. Mol Gen Genet 244:15–22

    Article  PubMed  CAS  Google Scholar 

  • Yoshimatsu K, Shimomura K (1992) Transformation of opium poppy (Papaver somniferum L.) with Agrobacterium rhizogenes MAFF 03-01724. Plant Cell Rep 11:132–136

    Google Scholar 

  • Yusibov VM, Steck TR, Gupta V, Gelvin SB (1994) Association of single-stranded transferred DNA from Agrobacterium tumefaciens with tobacco cells. Proc Natl Acad Sci USA 91:2994–2998

    Article  PubMed  CAS  Google Scholar 

  • Zambryski P, Joos H, Genetello C, Leemans J, Van Montagu M, Schell J (1983) Ti-plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J 2:2143–2150

    PubMed  CAS  Google Scholar 

  • Zdravkovic-Korac S, Muhovski Y, Druart PH, Calic D, Radojevic LJ (2004) Agrobacterium rhizogenes-mediated DNA transfer to Aesculus hippocastanum L. and the regeneration of transformed plants. Plant Cell Rep 22:698–704

    Article  PubMed  CAS  Google Scholar 

  • Zhan XC, Jones DA, Kerr A (1988) Regeneration of flax plants transformed by Agrobacterium rhizogenes. Plant Mol Biol 11:551–559

    Google Scholar 

  • Zhu JP, Oger M, Schrammeijer B, Hooykaas PJJ, Farrand SK, Winans SC (2000) The bases of crown gall tumorigenesis. J Bacteriol 182:3885–3895

    Article  PubMed  CAS  Google Scholar 

  • Ziemienowicz A, Merkle T, Schoumacher F, Hohn B, Rossi L (2001) Import of Agrobacterium T-DNA into plant nuclei: two distinct functions of VirD2 and VirE2 proteins. Plant Cell 13:369–383

    PubMed  CAS  Google Scholar 

  • Zuker A, Tzfira T, Scovel G, Ovadis M, Shklarman E, Itzhaki H (2001) rolC-transgenic carnation with improved agronomic traits: quantitative and qualitative analyses of greenhouse-grown plants. J Am Soc Hortic Sci 126:13–18

    CAS  Google Scholar 

  • Zupan JR, Zambryski P, Citovsky V (1996) Agrobacterium VirE2 protein mediates nuclear uptake of single-stranded DNA in plant cells. Proc Natl Acad Sci 93:2392–2397

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Ilker Ozyigit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ozyigit, I., Dogan, I., Artam Tarhan, E. (2013). Agrobacterium rhizogenes-Mediated Transformation and Its Biotechnological Applications in Crops. In: Hakeem, K., Ahmad, P., Ozturk, M. (eds) Crop Improvement. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-7028-1_1

Download citation

Publish with us

Policies and ethics