Skip to main content

Fuel Cell Comparison to Alternate Technologies

  • Chapter
  • First Online:
Book cover Fuel Cells

Abstract

The actual energy demand and consumption issues make it necessary to critically discuss and compare different energy conversion and storage systems. At present, only one third of the primary energy is converted into end energy, for example, electrical energy. Losses are associated with a high consumption of fossil fuels and large CO2 emissions. They can be avoided by considering important electrochemical processes for energy conversion, using batteries, fuel cells, supercapacitors and electrochemical photovoltaics and by incorporating energy storage, employing rechargeable batteries, supercapacitors, generation of hydrogen via electrolysis, and generation of methanol.

This chapter was originally published as part of the Encyclopedia of Sustainability Science and Technology edited by Robert A. Meyers. DOI:10.1007/978-1-4419-0851-3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Fuel cell:

A fuel cell is an electrochemical cell that can convert the chemical energy stored in a given fuel into electrical energy.

Electrochemical capacitor:

An electrochemical capacitor (supercapacitor, ultracapacitor or double-layer capacitor) is an electrochemical device that can store and convert energy by charging/discharging the electrochemical double-layer of 2 electrodes with large surface areas and thus large double layer capacitances.

Battery:

A battery or Voltaic cell consists of one or more electrochemical cells which store and convert chemical energy into electric energy.

Ragone plot:

A Ragone Plot compares the performances of different energy storing devices by plotting power densities or specific power [W/kg] versus energy densities or specific energy [Wh/kg].

Electromobility:

Electromobility is a mobility concept in which electric vehicles instead of vehicles powered by internal combustion engines are used.

Bibliography

  1. DOE/EIA-0484 (2010) National Energy Information Center, EI-30, U.S. Energy Information Administration, Forrestal Building, Washington, DC 20585

    Google Scholar 

  2. Kunze J, Stimming U (2009) Electrochemical versus heat engine energy technology: a tribute to Wilhelm Ostwald’s visionary statements. Angew Chem Int Ed 48:9230–9237

    Article  Google Scholar 

  3. Black WZ, Hartley JG (1985) Thermodynamics. Harper & Row, New York, pp 339–429

    Google Scholar 

  4. Armand M, Tarascon J-M (2008) Building better batteries. Nature 45:652–657

    Article  Google Scholar 

  5. Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498

    Article  Google Scholar 

  6. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  Google Scholar 

  7. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4269

    Article  Google Scholar 

  8. Jacoby M (2010) Rechargeable metal-air batteries. Chem Eng News 88:29–31

    Article  Google Scholar 

  9. Cairns EJ, Albertus P (2010) Batteries for electric and hybrid-electric vehicles. Annu Rev Chem Biomol Eng 1:299–320

    Article  Google Scholar 

  10. Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W (2010) Lithium-air battery: promise and challenges. J Phys Chem Lett 1:2193–2203

    Article  Google Scholar 

  11. Zhang HM, Zhang Y, Liu ZH, Wang XL (2009) Redox flow battery technology. Prog Chem 21:2333–2340

    Google Scholar 

  12. De Leon CP, Frias-Ferrer A, Gonzalez-Garcia J, Szanto DA, Walsh FC (2006) Redox flow cells for energy conversion. J Power Sources 160:716–732

    Article  Google Scholar 

  13. Hagedorn NH (1983) The iron-chromium redox battery. Abstr Pap Am Chem Soc 186:28

    Google Scholar 

  14. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313:1760–1763

    Article  Google Scholar 

  15. Lee SW, Yabuuchi N, Gallant BM, Chen S, Kim B-S, Hammond PT, Shao-Horn Y (2010) High-power lithium batteries from functionalized carbon-nanotube electrodes. Nat Nanotechnol 5:531–537

    Article  Google Scholar 

  16. Gerischer H, Tributsch H (1968) Electrochemische Untersuchungen zur spectraleu sensibilisierung von ZnO-Einkristallen. Ber unsenges Phys Chem 72:437–445

    Google Scholar 

  17. Hauffe K, Danzmann HJ, Pusch H, Range J, Volz H (1970) New experiments on the sensitization of zinc oxide by means of the electrochemical cell technique. J Electrochem Soc 117:993–999

    Article  Google Scholar 

  18. Myamlin VA, Pleskov YV (1967) Electrochemistry of semiconductors. Plenum, New York

    Google Scholar 

  19. Gratzel M (2003) Applied physics: solar cells to dye for. Nature 421:586–587

    Article  Google Scholar 

  20. Gratzel M (2004) Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J Photochem Photobiol A 164:3–14

    Article  Google Scholar 

  21. Hagfeldt A, Gratzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95:49–68

    Article  Google Scholar 

  22. Hagfeldt A, Gratzel M (2000) Molecular photovoltaics. Acc Chem Res 33:269–277

    Article  Google Scholar 

  23. Ellis AB, Kaiser SW, Wrighton MS (1976) Visible light to electrical energy conversion. Stable cadmium sulfide and cadmium selenide photoelectrodes in aqueous electrolytes. J Am Chem Soc 98:1635–1637

    Article  Google Scholar 

  24. Ellis AB, Bolts JM, Wrighton MS (1977) Characterization of n-type semiconducting indium phosphide photoelectrodes. J Electrochem Soc 124:1603–1607

    Article  Google Scholar 

  25. Hodes G, Manassen J, Cahen D (1976) Photoelectrochemical energy onversion and storage using polycrystalline chalcogenide electrodes. Nature 261:403–404

    Article  Google Scholar 

  26. Miller B, Heller A (1976) Semiconductor liquid junction solar cells based on anodic sulfide films. Nature 262:680–681

    Article  Google Scholar 

  27. Wurfel U, Peters M, Hinsch A (2008) Detailed experimental and theoretical investigation of the electron transport in a dye solar cell by means of a three-electrode configuration. J Phys Chem C 112:1711–1720

    Article  Google Scholar 

  28. Chen C, Wang M, Li J, Pootrakulchote N, Alibabaei L, Ngoc-le C, Decoppet J-D, Tsai J-H, Grätzel C, Wu C-G, Zakeeruddin SM, Grätzel M (2009) Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS Nano 3:3103

    Article  Google Scholar 

  29. Gratzel M (2007) Photovoltaic and photoelectrochemical conversion of solar energy. Philos Trans R Soc A 365:993–1005

    Article  Google Scholar 

  30. Wagner FT, Lakshmanan B, Mathias MF (2010) Electrochemistry and the future of the automobile. J Phys Chem Lett 1:2204–2219

    Article  Google Scholar 

  31. Wang MQ (2007) Greenhouse gases, regulated emissions, and energy use in transportation (GREET). The Argonne National Laboratory, Argonne. http://www.transportation.anl.gov/modeling_simulation/GREET/index.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Kunze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kunze, J., Paschos, O., Stimming, U. (2013). Fuel Cell Comparison to Alternate Technologies. In: Kreuer, KD. (eds) Fuel Cells. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5785-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5785-5_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5784-8

  • Online ISBN: 978-1-4614-5785-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics