Skip to main content
Book cover

Adenosine pp 213–232Cite as

Adenosine and Other Purinergic Products in Circadian Timing

  • Chapter
  • First Online:
  • 1527 Accesses

Abstract

The circadian oscillator plays an important role in behavior and metabolic physiology. In turn, adenosine occupies a unique position as both a fundamental neuromodulator and a basic building block of cellular metabolism. Multiple connections exist between the two, both through the direct actions of adenosine and through the cellular signaling cascades regulating and regulated by its availability. Specifically, we show that the circadian clock is connected to adenosine and other purinergic products on three levels. At the level of circadian signaling, the adenosine-derived signaling molecule cAMP is itself a circadian clock component that indirectly induces transcription of many circadian genes, as well as influencing cell cycle timing. At the level of metabolism, AMP kinase, a cellular energy sensor dependent upon AMP, can phosphorylate multiple clock proteins. It phosphorylates cryptochromes and thereby enhances the activity of the inhibitory clock protein complex that contains them. The histone and clock protein deacetylase SIRT1 is also phosphorylated and upregulated by AMPK, leading to increased clock protein degradation and chromatin repression. SIRT1 activity is also regulated by NAD+ cofactors, whose levels are themselves under both circadian and metabolic control. Finally, multiple adenosine receptor subtypes can control clock function. A3 receptors influence mammalian temperature control and therefore possibly the circadian oscillator. A1 receptor transcription can be induced indirectly via glucocorticoids which are under circadian control. In addition, A1 receptors modulate light responsiveness of the circadian clock. Taken together, this intricate regulatory web likely permits a complex dialogue between metabolism and diurnal behavior and physiology that allows organisms to exploit their circadian geophysical environment optimally.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amelio AL, Miraglia LJ, Conkright JJ, Mercer BA, Batalov S, Cavett V, Orth AP, Busby J, Hogenesch JB, Conkright MD (2007) A coactivator trap identifies NONO (p54nrb) as a component of the cAMP-signaling pathway. Proc Natl Acad Sci USA 104:20314–20319

    Article  CAS  PubMed  Google Scholar 

  • An S, Irwin RP, Allen CN, Tsai C, Herzog ED (2011) Vasoactive intestinal polypeptide requires parallel changes in adenylate cyclase and phospholipase C to entrain circadian rhythms to a predictable phase. J Neurophysiol 105:2289–2296

    Article  CAS  PubMed  Google Scholar 

  • Antle MC, Steen NM, Mistlberger RE (2001) Adenosine and caffeine modulate circadian rhythms in the Syrian hamster. Neuroreport 12:2901–2905

    Article  CAS  PubMed  Google Scholar 

  • Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, Mostoslavsky R, Alt FW, Schibler U (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134:317–328

    Article  CAS  PubMed  Google Scholar 

  • Asher G, Reinke H, Altmeyer M, Gutierrez-Arcelus M, Hottiger MO, Schibler U (2010) Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 142:943–953

    Article  CAS  PubMed  Google Scholar 

  • Asher G, Schibler U (2011) Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab 13:125–137

    Article  CAS  PubMed  Google Scholar 

  • Atkinson SE, Maywood ES, Chesham JE, Wozny C, Colwell CS, Hastings MH, Williams SR (2011) Cyclic AMP signaling control of action potential firing rate and molecular circadian pacemaking in the suprachiasmatic nucleus. J Biol Rhythms 26:210–220

    Article  CAS  PubMed  Google Scholar 

  • Bailey MJ, Coon SL, Carter DA, Humphries A, Kim JS, Shi Q, Gaildrat P, Morin F, Ganguly S, Hogenesch JB et al (2009) Night/day changes in pineal expression of >600 genes. J Biol Chem 284:7606–7622

    Article  CAS  PubMed  Google Scholar 

  • Bartness TJ, Song CK, Demas GE (2001) SCN efferents to peripheral tissues: implications for biological rhythms. J Biol Rhythms 16:196–204

    CAS  PubMed  Google Scholar 

  • Bellet MM, Sassone-Corsi P (2010) Mammalian circadian clock and metabolism―the epigenetic link. J Cell Sci 123:3837–3848

    Article  CAS  PubMed  Google Scholar 

  • Bernardinelli Y, Magistretti PJ, Chatton J-Y (2004) Astrocytes generate Na+-mediated metabolic waves. Proc Natl Acad Sci USA 101:14937–14942

    Article  CAS  PubMed  Google Scholar 

  • Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:1070–1073

    Article  CAS  PubMed  Google Scholar 

  • Besharse J, Dunis D (1983) Methoxyindoles and photoreceptor metabolism: activation of rod shedding. Science 219:1341–1343

    Article  CAS  PubMed  Google Scholar 

  • Besharse JC, Iuvone PM (1983) Circadian clock in Xenopus eye controlling retinal serotonin N-acetyltransferase. Nature 305:133–135

    Article  CAS  PubMed  Google Scholar 

  • Brandenburg J, Bobbert AC, Eggelmeyer F (1983) Circadian changes in the response of the rabbit’s retina to flashes. Behav Brain Res 7:113–123

    Article  CAS  PubMed  Google Scholar 

  • Brown SA, Ripperger J, Kadener S, Fleury-Olela F, Vilbois F, Rosbash M, Schibler U (2005) PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator. Science 308:693–696

    Article  CAS  PubMed  Google Scholar 

  • Brown SA, Zumbrunn G, Fleury-Olela F, Preitner N, Schibler U (2002) Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr Biol 12:1574–1583

    Article  CAS  PubMed  Google Scholar 

  • Burkeen JF, Womac AD, Earnest DJ, Zoran MJ (2011) Mitochondrial calcium signaling mediates rhythmic extracellular ATP accumulation in suprachiasmatic nucleus astrocytes. J Neurosci 31:8432–8440

    Article  CAS  PubMed  Google Scholar 

  • Cantó C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458:1056–1060

    Article  PubMed  Google Scholar 

  • Cantó C, Jiang LQ, Deshmukh AS, Mataki C, Coste A, Lagouge M, Zierath JR, Auwerx J (2010) Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab 11:213–219

    Article  PubMed  Google Scholar 

  • Card JP (2000) Pseudorabies virus and the functional architecture of the circadian timing system. J Biol Rhythms 15:453–461

    CAS  PubMed  Google Scholar 

  • Castel M, Belenky M, Cohen S, Ottersen OP, Storm-Mathisen J (1993) Glutamate-like immunoreactivity in retinal terminals of the mouse suprachiasmatic nucleus. Eur J Neurosci 5:368–381

    Article  CAS  PubMed  Google Scholar 

  • Challet E (2010) Interactions between light, mealtime and calorie restriction to control daily timing in mammals. J Comp Physiol B 180:631–644

    Article  PubMed  Google Scholar 

  • Chik CL, Arnason TG, Dukewich WG, Price DM, Ranger A, Ho AK (2007) Histone H3 phosphorylation in the rat pineal gland: adrenergic regulation and diurnal variation. Endocrinology 148:1465–1472

    Article  CAS  PubMed  Google Scholar 

  • Cuninkova L, Brown SA (2008) Peripheral circadian oscillators. Ann N Y Acad Sci 1129:358–370

    Article  PubMed  Google Scholar 

  • Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14:2950–2961

    Article  CAS  PubMed  Google Scholar 

  • Dibner C, Schibler U, Albrecht U (2010) The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 72:517–549

    Article  CAS  PubMed  Google Scholar 

  • Dickmeis T (2009) Glucocorticoids and the circadian clock. J Endocrinol 200:3–22

    Article  CAS  PubMed  Google Scholar 

  • Drouyer E, Rieux C, Hut RA, Cooper HM (2007) Responses of suprachiasmatic nucleus neurons to light and dark adaptation: relative contributions of melanopsin and rod cone inputs. J Neurosci 27:9623–9631

    Article  CAS  PubMed  Google Scholar 

  • Dunwiddie TV, Masino SA (2001) The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 24:31–55

    Article  CAS  PubMed  Google Scholar 

  • Duong HA, Robles MS, Knutti D, Weitz CJ (2011) A molecular mechanism for circadian clock negative feedback. Science 332:1436–1439

    Article  CAS  PubMed  Google Scholar 

  • Eckel-Mahan KL, Storm DR (2009) Circadian rhythms and memory: not so simple as cogs and gears. EMBO Rep 10:584–591

    Article  CAS  PubMed  Google Scholar 

  • Elliott KJ, Todd Weber E, Rea MA (2001) Adenosine A1 receptors regulate the response of the hamster circadian clock to light. Eur J Pharmacol 414:45–53

    Article  CAS  PubMed  Google Scholar 

  • Figler RA, Wang G, Srinivasan S, Jung DY, Zhang Z, Pankow JS, Ravid K, Fredholm B, Hedrick CC, Rich SS et al (2011) Links between insulin resistance, adenosine A2B receptors, and inflammatory markers in mice and humans. Diabetes 60:669–679

    Article  CAS  PubMed  Google Scholar 

  • Foley NC, Tong TY, Foley D, LeSauter J, Welsh DK, Silver R (2011) Characterization of orderly spatiotemporal patterns of clock gene activation in mammalian suprachiasmatic nucleus. Eur J Neurosci 33:1851–1865

    Article  PubMed  Google Scholar 

  • Fredholm BB, Arslan G, Halldner L, Kull B, Schulte G, Wasserman W (2000) Structure and function of adenosine receptors and their genes. Naunyn Schmiedebergs Arch Pharmacol 362:364–374

    Article  CAS  PubMed  Google Scholar 

  • Fu L, Lee CC (2003) The circadian clock: pacemaker and tumour suppressor. Nat Rev Cancer 3:350–361

    Article  CAS  PubMed  Google Scholar 

  • Gomes CV, Kaster MP, Tomé AR, Agostinho PM, Cunha RA (2011) Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Biochim Biophys Acta 1808:1380

    Article  CAS  PubMed  Google Scholar 

  • Green CB, Besharse JC (2004) Retinal circadian clocks and control of retinal physiology. J Biol Rhythms 19:91–102

    Article  CAS  PubMed  Google Scholar 

  • Hallworth R, Cato M, Colbert C, Rea MA (2002) Presynaptic adenosine A1 receptors regulate retinohypothalamic neurotransmission in the hamster suprachiasmatic nucleus. J Neurobiol 52:230–240

    Article  CAS  PubMed  Google Scholar 

  • Hardie DG (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8:774–785

    Article  CAS  PubMed  Google Scholar 

  • Hastings M, O’Neill JS, Maywood ES (2007) Circadian clocks: regulators of endocrine and metabolic rhythms. J Endocrinol 195:187–198

    Article  CAS  PubMed  Google Scholar 

  • Haydon PG (2001) Glia: listening and talking to the synapse. Nat Rev Neurosci 2:185–193

    Article  CAS  PubMed  Google Scholar 

  • Ho AK, Price DM, Dukewich WG, Steinberg N, Arnason TG, Chik CL (2007) Acetylation of histone H3 and adrenergic-regulated gene transcription in rat pinealocytes. Endocrinology 148:4592–4600

    Article  CAS  PubMed  Google Scholar 

  • Imai SI, Armstrong CM, Kaeberlein M, Guarente L (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403:795–800

    Article  CAS  PubMed  Google Scholar 

  • Ishida A, Mutoh T, Ueyama T, Bando H, Masubuchi S, Nakahara D, Tsujimoto G, Okamura H (2005) Light activates the adrenal gland: timing of gene expression and glucocorticoid release. Cell Metab 2:297–307

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa K, Shimanzu T (1976) Daily rhythm of glycogen synthetase and phosphorylase activities in rat liver: influence of food and light. Life Sci 19:1873–1878

    Article  CAS  PubMed  Google Scholar 

  • Ishiura M, Kutsuna S, Aoki S, Iwasaki H, Andersson CR, Tanabe A, Golden SS, Johnson CH, Kondo T (1998) Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science 281:1519–1523

    Article  CAS  PubMed  Google Scholar 

  • Kahn BB, Alquier T, Carling D, Hardie DG (2005) AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1:15–25

    Article  CAS  PubMed  Google Scholar 

  • Kalsbeek A, van der Spek R, Lei J, Endert E, Buijs RM, Fliers E (2012) Circadian rhythms in the hypothalamo-pituitary-adrenal (HPA) axis. Mol Cell Endocrinol 349(1):20–29

    Article  CAS  PubMed  Google Scholar 

  • Katada S, Sassone-Corsi P (2010) The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat Struct Mol Biol 17:1414–1421

    Article  CAS  PubMed  Google Scholar 

  • Kemp BE, Mitchelhill KI, Stapleton D, Michell BJ, Chen Z-P, Witters LA (1999) Dealing with energy demand: the AMP-activated protein kinase. Trends Biochem Sci 24:22–25

    Article  CAS  PubMed  Google Scholar 

  • Kim J-S, Coon SL, Blackshaw S, Cepko CL, Møller M, Mukda S, Zhao W-Q, Charlton CG, Klein DC (2005) Methionine adenosyltransferase:adrenergic-cAMP mechanism regulates a daily rhythm in pineal expression. J Biol Chem 280:677–684

    CAS  PubMed  Google Scholar 

  • Knutsson A, Hallquist J, Reuterwall C, Theorell T, Akerstedt T (1999) Shiftwork and myocardial infarction: a case-control study. Occup Environ Med 56:46–50

    Article  CAS  PubMed  Google Scholar 

  • Lamia KA, Sachdeva UM, DiTacchio L, Williams EC, Alvarez JG, Egan DF, Vasquez DS, Juguilon H, Panda S, Shaw RJ et al (2009) AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326:437–440

    Article  CAS  PubMed  Google Scholar 

  • Lamont E, Coutu D, Cermakian N, Boivin D (2010) Circadian rhythms and clock genes in psychotic disorders. Isr J Psychiatry Relat Sci 47:27–35

    PubMed  Google Scholar 

  • Latini S, Pedata F (2001) Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem 79:463–484

    Article  CAS  PubMed  Google Scholar 

  • Lehman MN, Silver R, Gladstone WR, Kahn RM, Gibson M, Bittman EL (1987) Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain. J Neurosci 7:1626–1638

    CAS  PubMed  Google Scholar 

  • Lucas RJ, Stirland JA, Darrow JM, Menaker M, Loudon ASI (1999) Free running circadian rhythms of melatonin, luteinizing hormone, and cortisol in Syrian hamsters bearing the circadian tau mutation. Endocrinology 140:758–764

    Article  CAS  PubMed  Google Scholar 

  • Mansour HA, Monk TH, Nimgaonkar VL (2005) Circadian genes and bipolar disorder. Ann Med 37:196–205

    Article  CAS  PubMed  Google Scholar 

  • Manzoni OJ, Manabe T, Nicoll RA (1994) Release of adenosine by activation of NMDA receptors in the hippocampus. Science 265:2098–2101

    Article  CAS  PubMed  Google Scholar 

  • Marpegan L, Swanstrom AE, Chung K, Simon T, Haydon PG, Khan SK, Liu AC, Herzog ED, Beaulé C (2011) Circadian regulation of ATP release in astrocytes. J Neurosci 31:8342–8350

    Article  CAS  PubMed  Google Scholar 

  • Mistlberger RE (2011) Neurobiology of food anticipatory circadian rhythms. Physiol Behav 104(4):535–545

    Article  CAS  PubMed  Google Scholar 

  • Moga MM, Moore RY (1997) Organization of neural inputs to the suprachiasmatic nucleus in the rat. J Comp Neurol 389:508–534

    Article  CAS  PubMed  Google Scholar 

  • Moons T, Claes S, Martens GJM, Peuskens J, Van Loo KMJ, Van Schijndel JE, De Hert M, van Winkel R (2011) Clock genes and body composition in patients with schizophrenia under treatment with antipsychotic drugs. Schizophr Res 125:187–193

    Article  PubMed  Google Scholar 

  • Moore R, Speh J, Leak R (2002) Suprachiasmatic nucleus organization. Cell Tissue Res 309:89–98

    Article  CAS  PubMed  Google Scholar 

  • Moore RY (2007) Suprachiasmatic nucleus in sleep-wake regulation. Sleep Med 8:27–33

    Article  PubMed  Google Scholar 

  • Nagoshi E, Saini C, Bauer C, Laroche T, Naef F, Schibler U (2004) Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119:693–705

    Article  CAS  PubMed  Google Scholar 

  • Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P (2009) Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324:654–657

    Article  CAS  PubMed  Google Scholar 

  • Nakazato R, Takarada T, Yamamoto T, Hotta S, Hinoi E, Yoneda Y (2011) Selective upregulation of Per1 mRNA expression by ATP through activation of P2X7 purinergic receptors expressed in microglial cells. J Pharmacol Sciences 116, 350–361

    Google Scholar 

  • O’Neill JS, Maywood ES, Chesham JE, Takahashi JS, Hastings MH (2008) cAMP-dependent signaling as a core component of the mammalian circadian pacemaker. Science 320:949–953

    Article  PubMed  Google Scholar 

  • O’Neill JS, van Ooijen G, Dixon LE, Troein C, Corellou F, Bouget F-Y, Reddy AB, Millar AJ (2011) Circadian rhythms persist without transcription in a eukaryote. Nature 469:554–558

    Article  PubMed  Google Scholar 

  • Pattanayek R, Mori T, Xu Y, Pattanayek S, Johnson CH, Egli M (2009) Structures of KaiC circadian clock mutant proteins: a new phosphorylation site at T426 and mechanisms of Kinase, ATPase and phosphatase. PLoS One 4:e7529

    Article  PubMed  Google Scholar 

  • Pietroiusti A, Neri A, Somma G, Coppeta L, Iavicoli I, Bergamaschi A, Magrini A (2010) Incidence of metabolic syndrome among night-shift healthcare workers. Occup Environ Med 67:54–57

    Article  CAS  PubMed  Google Scholar 

  • Popoli P, Ferré S, Pezzola A, Reggio R, Scotti de Carolis A, Fuxe K (1996) Stimulation of adenosine A1 receptors prevents the EEG arousal due to dopamine D1 receptor activation in rabbits. Eur J Pharmacol 305:123–126

    Article  CAS  PubMed  Google Scholar 

  • Rath MF, Bailey MJ, Kim J-S, Ho AK, Gaildrat P, Coon SL, Møller M, Klein DC (2009) Developmental and diurnal dynamics of Pax4 expression in the mammalian pineal gland: nocturnal down-regulation is mediated by adrenergic-cyclic adenosine 3′,5′-monophosphate signaling. Endocrinology 150:803–811

    Article  CAS  PubMed  Google Scholar 

  • Ren H, Stiles GL (1999) Dexamethasone stimulates human A1 adenosine receptor (A1AR) gene expression through multiple regulatory sites in promoter B. Mol Pharmacol 55:309–316

    CAS  PubMed  Google Scholar 

  • Reppert SM, Weaver DR (2001) Molecular analysis of mammalina circadian rhythms. Annu Rev Physiol 63:647–676

    Article  CAS  PubMed  Google Scholar 

  • Revollo JR, Grimm AA, Imai SI (2004) The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem 279:50754–50763

    Article  CAS  PubMed  Google Scholar 

  • Ribelayga C, Mangel SC (2005) A circadian clock and light/dark adaptation differentially regulate adenosine in the mammalian retina. J Neurosci 25:215–222

    Article  CAS  PubMed  Google Scholar 

  • Ripperger JA, Merrow M (2011) Perfect timing: epigenetic regulation of the circadian clock. FEBS Lett 585:1406–1411

    Article  CAS  PubMed  Google Scholar 

  • Ruby NF, Hwang CE, Wessells C, Fernandez F, Zhang P, Sapolsky R, Heller HC (2008) Hippocampal-dependent learning requires a functional circadian system. Proc Natl Acad Sci USA 105:15593–15598

    Article  CAS  PubMed  Google Scholar 

  • Rüger M, Scheer F (2009) Effects of circadian disruption on the cardiometabolic system. Rev Endocr Metab Disord 10:245–260

    Article  PubMed  Google Scholar 

  • Rust MJ, Golden SS, O’Shea EK (2011) Light-driven changes in energy metabolism directly entrain the cyanobacterial circadian oscillator. Science 331:220–223

    Article  CAS  PubMed  Google Scholar 

  • Schibler U, Ripperger J, Brown SA (2003) Peripheral circadian oscillators in mammals: time and food. J Biol Rhythms 18:250–260

    Article  PubMed  Google Scholar 

  • Shibata S (2004) Neural regulation of the hepatic circadian rhythm. Anat Rec A Discov Mol Cell Evol Biol 280A:901–909

    Article  CAS  Google Scholar 

  • Sigworth LA, Rea MA (2003) Adenosine A1 receptors regulate the response of the mouse circadian clock to light. Brain Res 960:246–251

    Article  CAS  PubMed  Google Scholar 

  • Stokkan K-A, Yamazaki S, Tei H, Sakaki Y, Menaker M (2001) Entrainment of the circadian clock in the liver by feeding. Science 291:490–493

    Article  CAS  PubMed  Google Scholar 

  • Tononi G, Cirelli C (2006) Sleep function and synaptic homeostasis. Sleep Med Rev 10:49–62

    Article  PubMed  Google Scholar 

  • Tosini G, Menaker M (1996) Circadian rhythms in cultured mammalian retina. Science 272:419–421

    Article  CAS  PubMed  Google Scholar 

  • Um J-H, Pendergast JS, Springer DA, Foretz M, Viollet B, Brown A, Kim MK, Yamazaki S, Chung JH (2011) AMPK regulates circadian rhythms in a tissue- and isoform-specific manner. PLoS One 6:e18450

    Article  CAS  PubMed  Google Scholar 

  • Um JH, Yang S, Yamazaki S, Kang H, Viollet B, Foretz M, Chung JH (2007) Activation of 5′-AMP-activated kinase with diabetes drug metformin induces casein kinase Iε (CKIε)-dependent degradation of clock protein mPer2. J Biol Chem 282:20794–20798

    Article  CAS  PubMed  Google Scholar 

  • Wang H-Y, Huang R-C (2004) Diurnal modulation of the Na+/K+-ATPase and spontaneous firing in the rat retinorecipient clock neurons. J Neurophysiol 92:2295–2301

    Article  CAS  PubMed  Google Scholar 

  • Wang Y-C, Huang R-C (2006) Effects of sodium pump activity on spontaneous firing in neurons of the rat suprachiasmatic nucleus. J Neurophysiol 96:109–118

    Article  CAS  PubMed  Google Scholar 

  • Watanabe A, Moriya T, Nisikawa Y, Araki T, Hamada T, Shibata S, Watanabe S (1996) Adenosine A1-receptor agonist attenuates the light-induced phase shifts and fos expression in vivo and optic nerve stimulation-evoked field potentials in the suprachiasmatic nucleus in vitro. Brain Res 740:329–336

    Article  CAS  PubMed  Google Scholar 

  • Westermeier F, Salomón C, González M, Puebla C, Guzmán-Gutiérrez E, Cifuentes F, Leiva A, Casanello P, Sobrevia L (2011) Insulin restores gestational diabetes mellitus-reduced adenosine transport involving differential expression of insulin receptor isoforms in human umbilical vein endothelium. Diabetes 60:1677–1687

    Article  CAS  PubMed  Google Scholar 

  • Womac AD, Burkeen JF, Neuendorff N, Earnest DJ, Zoran MJ (2009) Circadian rhythms of extracellular ATP accumulation in suprachiasmatic nucleus cells and cultured astrocytes. Eur J Neurosci 30:869–876

    Article  PubMed  Google Scholar 

  • Yang JN, Wang Y, Garcia-Roves PM, Björnholm M, Fredholm BB (2010) Adenosine A3 receptors regulate heart rate, motor activity and body temperature. Acta Physiol 199:221–230

    Article  CAS  Google Scholar 

  • Zhang EE, Liu Y, Dentin R, Pongsawakul PY, Liu AC, Hirota T, Nusinow DA, Sun X, Landais S, Kodama Y et al (2010) Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nat Med 16:1152–1156

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven A. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Muheim, C., Brown, S.A. (2013). Adenosine and Other Purinergic Products in Circadian Timing. In: Masino, S., Boison, D. (eds) Adenosine. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3903-5_11

Download citation

Publish with us

Policies and ethics