Skip to main content

Comparative Interaction Networks: Bridging Genotype to Phenotype

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((volume 751))

Abstract

Over the past decade, biomedical research has witnessed an exponential increase in the throughput of the characterization of biological systems. Here we review the recent progress in large-scale methods to determine protein–protein, genetic and chemical–genetic interaction networks. We discuss some of the limitations and advantages of the different methods and give examples of how these networks are being used to study the evolutionary process. Comparative studies have revealed that different types of protein–protein interactions diverge at different rates with high conservation of co-complex membership but rapid divergence of more promiscuous interactions like those that mediate post-translational modifications. These evolutionary trends have consistent genetic consequences with highly conserved epistatic interactions within complex subunits but faster divergence of epistatic interactions across complexes or pathways. Finally, we discuss how these evolutionary observations are being used to interpret cross-species chemical-genetic studies and how they might shape therapeutic strategies. Together, these interaction networks offer us an unprecedented level of detail into how genotypes are translated to phenotypes, and we envision that they will be increasingly useful in the interpretation of genetic and phenotypic variation occurring within populations as well as the rational design of combinatorial therapeutics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Koonin EV (2009) Darwinian evolution in the light of genomics. Nucleic Acid Res 37:1011–1034

    Article  PubMed  CAS  Google Scholar 

  2. Lynch M (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    Article  PubMed  CAS  Google Scholar 

  3. Dietrich FS, Voegeli S, Brachat S, Lerch A, Gates K, et al. (2004) The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science (New York, NY) 304:304–307

    Google Scholar 

  4. Kellis M, Birren BW, Lander ES (2004) Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428:617–624

    Article  PubMed  CAS  Google Scholar 

  5. Lynch M, Conery JS (2003) The origins of genome complexity. Science (New York, NY) 302:1401–1404

    Google Scholar 

  6. King N, Westbrook MJ, Young SL, Kuo A, Abedin M, et al. (2008) The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451:783–788

    Article  PubMed  CAS  Google Scholar 

  7. Cock JM, Sterck L, Rouzé P, Scornet D, Allen AE, et al. (2010) The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465:617–621

    Article  PubMed  CAS  Google Scholar 

  8. Kellis M, Patterson N, Endrizzi M, Birren B, Lander ES (2003) Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423:241–254

    Article  PubMed  CAS  Google Scholar 

  9. Lindblad-Toh K, Garber M, Zuk O, Lin MF, Parker BJ, et al. (2011) A high-resolution map of human evolutionary constraint using 29 mammals. Nature 478(7370):476–482

    Article  PubMed  CAS  Google Scholar 

  10. Consortium TIH (2005) A haplotype map of the human genome. Nature 437:1299–1320

    Article  Google Scholar 

  11. Tuch BB, Li H, Johnson AD (2008) Evolution of eukaryotic transcription circuits. Science (New York, NY) 319:1797–1799

    Google Scholar 

  12. Tirosh I, Barkai N (2011) Inferring regulatory mechanisms from patterns of evolutionary divergence. Mol Syst Biol 7:1–10

    Article  Google Scholar 

  13. Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340:245–246

    Article  PubMed  CAS  Google Scholar 

  14. Kerppola TK (2006) Complementary methods for studies of protein interactions in living cells. Nat Meth 3:969–971

    Article  CAS  Google Scholar 

  15. Gingras A-C, Gstaiger M, Raught B, Aebersold R (2007) Analysis of protein complexes using mass spectrometry. Nat Rev Mol Cell Biol 8:645–654

    Article  PubMed  CAS  Google Scholar 

  16. Przytycka TM, Singh M, Slonim DK (2010) Toward the dynamic interactome: it’s about time. Brief Bioinform 11:15–29

    Article  PubMed  CAS  Google Scholar 

  17. Braun P, Tasan M, Dreze M, Barrios-Rodiles M, Lemmens I, et al. (2009) An experimentally derived confidence score for binary protein-protein interactions. Nat Meth 6:91–97

    Article  CAS  Google Scholar 

  18. Reguly T, Breitkreutz A, Boucher L, Breitkreutz B-J, Hon GC, et al. (2006) Comprehensive curation and analysis of global interaction networks in Saccharomyces cerevisiae. J Biol 5:11

    Article  PubMed  Google Scholar 

  19. King MC, Wilson A (1975) Evolution at two levels humans and chimpanze. Science 188:107–116

    Article  PubMed  CAS  Google Scholar 

  20. Wagner A (2003) How the global structure of protein interaction networks evolves. Proc Biol Sci/The Royal Society 270:457–466

    Article  CAS  Google Scholar 

  21. Beltrao P, Serrano L (2007) Specificity and evolvability in eukaryotic protein interaction networks. PLoS Comput Biol 3:e25

    Article  PubMed  Google Scholar 

  22. Dreze M, Carvunis a.-R, Charloteaux B, Galli M, Pevzner SJ, et al. (2011) Evidence for network evolution in an arabidopsis interactome map. Science 333:601–607

    Google Scholar 

  23. van Dam TJP, Snel B (2008) Protein complex evolution does not involve extensive network rewiring. PLoS Comput Biol 4:e1000132

    Article  PubMed  Google Scholar 

  24. Pereira-Leal JB, Teichmann Sa (2005) Novel specificities emerge by stepwise duplication of functional modules. Genome Res 15:552–559

    Article  PubMed  CAS  Google Scholar 

  25. Pereira-Leal JB, Levy ED, Kamp C, Teichmann Sa (2007) Evolution of protein complexes by duplication of homomeric interactions. Genome Biol 8:R51

    Article  PubMed  Google Scholar 

  26. Pereira-Leal JB, Levy ED, Teichmann Sa (2006) The origins and evolution of functional modules: lessons from protein complexes. Philos Trans R Soc Lond B Biol Sci 361:507–517

    Article  PubMed  CAS  Google Scholar 

  27. Yosef N, Kupiec M, Ruppin E, Sharan R (2009) A complex-centric view of protein network evolution. Nucleic Acid Res 37:e88

    Article  PubMed  Google Scholar 

  28. Levy ED, Boeri Erba E, Robinson CV, Teichmann Sa (2008) Assembly reflects evolution of protein complexes. Nature 453:1262–1265

    Article  PubMed  CAS  Google Scholar 

  29. Archibald JM, Logsdon JM, Doolittle WF (2000) Origin and evolution of eukaryotic chaperonins: phylogenetic evidence for ancient duplications in CCT genes. Mol Biol Evol 17:1456–1466

    Article  PubMed  CAS  Google Scholar 

  30. Archibald JM, Blouin C, Doolittle WF (2001) Gene duplication and the evolution of group II chaperonins: implications for structure and function. J Struct Biol 135:157–169

    Article  PubMed  CAS  Google Scholar 

  31. Shou C, Bhardwaj N, Lam HYK, Yan K-K, Kim PM, et al. (2011) Measuring the evolutionary rewiring of biological networks. PLoS Comput Biol 7:e1001050

    Article  PubMed  CAS  Google Scholar 

  32. Diella F, Haslam N, Chica C, Budd A, Michael S, et al. (2008) Understanding eukaryotic linear motifs and their role in cell signaling and regulation. Front Biosci 13:6580–6603

    Article  PubMed  CAS  Google Scholar 

  33. Neduva V, Russell RB (2005) Linear motifs: evolutionary interaction switches. FEBS Lett 579:3342–3345

    Article  PubMed  CAS  Google Scholar 

  34. Beltrao P, Trinidad JC, Fiedler D, Roguev A, Lim W a, et al. (2009) Evolution of phosphoregulation: comparison of phosphorylation patterns across yeast species. PLoS Biol 7:e1000134

    Google Scholar 

  35. Tan CSH, Bodenmiller B, Pasculescu A, Jovanovic M, Hengartner MO, et al. (2009) Comparative analysis reveals conserved protein phosphorylation networks implicated in multiple diseases. Sci Signal 2:ra39

    Google Scholar 

  36. Holt LJ, Tuch BB, Villén J, Johnson AD, Gygi SP, et al. (2009) Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science (New York, NY) 325:1682–1686

    Google Scholar 

  37. Choudhary C, Mann M (2010) Decoding signalling networks by mass spectrometry-based proteomics. Nat Rev Mol Cell Biol 11:427–439

    Article  PubMed  CAS  Google Scholar 

  38. Landry CR, Levy ED, Michnick SW (2009) Weak functional constraints on phosphoproteomes. Trends Genet 25:193–197

    Article  PubMed  CAS  Google Scholar 

  39. Amoutzias GD, He Y, Gordon J, Mossialos D, Oliver SG, et al. (2010) Posttranslational regulation impacts the fate of duplicated genes. Proc Natal Acad Sci USA 107:2967–2971

    Article  CAS  Google Scholar 

  40. Freschi L, Courcelles M, Thibault P, Michnick SW, Landry CR (2011) Phosphorylation network rewiring by gene duplication. Mol Syst Biol 7:504

    Article  PubMed  Google Scholar 

  41. Jensen LJ, Jensen TS, de Lichtenberg U, Brunak S, Bork P (2006) Co-evolution of transcriptional and post-translational cell-cycle regulation. Nature 443:594–597

    PubMed  CAS  Google Scholar 

  42. Moses AM, Landry CR (2010) Moving from transcriptional to phospho-evolution: generalizing regulatory evolution? Trends Genet 26:462–467

    Article  PubMed  CAS  Google Scholar 

  43. Michnick SW, Levy ED, Landry CR (2009) How perfect can protein interactomes be? Sci Signal 2:pe11

    Google Scholar 

  44. Giaever G, Chu AM, Ni L, Connelly C, Riles L, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391

    Article  PubMed  CAS  Google Scholar 

  45. Gu Z, Steinmetz LM, Gu X, Scharfe C, Davis RW, et al. (2003) Role of duplicate genes in genetic robustness against null mutations. Nature 421:63–66

    Article  PubMed  CAS  Google Scholar 

  46. Tong a H, Evangelista M, Parsons a B, Xu H, Bader GD, et al. (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science (New York, NY) 294:2364–2368

    Google Scholar 

  47. Beltrao P, Cagney G, Krogan NJ (2010) Quantitative genetic interactions reveal biological modularity. Cell 141:739–745

    Article  PubMed  CAS  Google Scholar 

  48. Schuldiner M, Collins SR, Thompson NJ, Denic V, Bhamidipati A, et al. (2005) Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123:507–519

    Article  PubMed  CAS  Google Scholar 

  49. Collins SR, Schuldiner M, Krogan NJ, Weissman JS (2006) A strategy for extracting and analyzing large-scale quantitative epistatic interaction data. Genome Biol 7:R63

    Article  PubMed  Google Scholar 

  50. Tong AHY, Lesage G, Bader GD, Ding H, Xu H, et al. (2004) Global mapping of the yeast genetic interaction network. Science (New York, NY) 303:808–813

    Google Scholar 

  51. Ihmels J, Collins SR, Schuldiner M, Krogan NJ, Weissman JS (2007) Backup without redundancy: genetic interactions reveal the cost of duplicate gene loss. Mol Syst Biol 3:86

    Article  PubMed  Google Scholar 

  52. VanderSluis B, Bellay J, Musso G, Costanzo M, Papp B, et al. (2010) Genetic interactions reveal the evolutionary trajectories of duplicate genes. Mol Syst Biol 6:429

    Article  PubMed  CAS  Google Scholar 

  53. Hart GT, Lee I, Marcotte ER (2007) A high-accuracy consensus map of yeast protein complexes reveals modular nature of gene essentiality. BMC Bioinform 8:236

    Article  Google Scholar 

  54. Kelley R, Ideker T (2005) Systematic interpretation of genetic interactions using protein networks. Nat Biotechnol 23:561–566

    Article  PubMed  CAS  Google Scholar 

  55. Typas A, Nichols RJ, Siegele DA, Shales M, Collins SR, et al. (2008) High-throughput, quantitative analyses of genetic interactions in E. coli. Nat Meth 5:781–787

    Article  CAS  Google Scholar 

  56. Butland G, Babu M, Díaz-Mejía JJ, Bohdana F, Phanse S, et al. (2008) eSGA: E. coli synthetic genetic array analysis. Nat Meth 5:789–795

    Article  CAS  Google Scholar 

  57. Roguev A, Bandyopadhyay S, Zofall M, Zhang K, Fischer T, et al. (2008) Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast. Science (New York, NY) 322:405–410

    Google Scholar 

  58. Dixon SJ, Fedyshyn Y, Koh JLY, Prasad TSK, Chahwan C, et al. (2008) Significant conservation of synthetic lethal genetic interaction networks between distantly related eukaryotes. Proc Natal Acad Sci USA 105:16653–16658

    Article  CAS  Google Scholar 

  59. Lehner B, Crombie C, Tischler J, Fortunato A, Fraser AG (2006) Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways. Nat Genet 38:896–903

    Article  PubMed  CAS  Google Scholar 

  60. Horn T, Sandmann T, Fischer B, Axelsson E, Huber W, et al. (2011) Mapping of signaling networks through synthetic genetic interaction analysis by RNAi. Nat Meth 8(4):341–346

    Article  CAS  Google Scholar 

  61. Tarailo M, Tarailo S, Rose AM (2007) Synthetic lethal interactions identify phenotypic “interologs” of the spindle assembly checkpoint components. Genetics 177:2525–2530

    Article  PubMed  CAS  Google Scholar 

  62. Tischler J, Lehner B, Fraser AG (2008) Evolutionary plasticity of genetic interaction networks. Nature Genet 40:390–391

    Article  PubMed  CAS  Google Scholar 

  63. Kim D-U, Hayles J, Kim D, Wood V, Park H-O, et al. (2010) Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe. Nat Biotechnol 28:617–623

    Article  PubMed  CAS  Google Scholar 

  64. Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4:682–690

    Article  PubMed  CAS  Google Scholar 

  65. Lehár J, Stockwell BR, Giaever G, Nislow C (2008) Combination chemical genetics. Nat Chem Biol 4:674–681

    Article  PubMed  Google Scholar 

  66. Parsons AB, Lopez A, Givoni IE, Williams DE, Gray C a, et al. (2006) Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in yeast. Cell 126:611–625

    Google Scholar 

  67. Ericson E, Gebbia M, Heisler LE, Wildenhain J, Tyers M, et al. (2008) Off-target effects of psychoactive drugs revealed by genome-wide assays in yeast. PLoS Genet 4:e1000151

    Article  PubMed  Google Scholar 

  68. Xu D, Jiang B, Ketela T, Lemieux S, Veillette K, et al. (2007) Genome-wide fitness test and mechanism-of-action studies of inhibitory compounds in Candida albicans. PLoS Pathog 3:e92

    Article  PubMed  Google Scholar 

  69. Nichols RJ, Sen S, Choo YJ, Beltrao P, Zietek M, et al. (2011) Phenotypic landscape of a bacterial cell. Cell 144:143–156

    Article  PubMed  CAS  Google Scholar 

  70. Hillenmeyer ME, Ericson E, Davis RW, Nislow C, Koller D, et al. (2010) Systematic analysis of genome-wide fitness data in yeast reveals novel gene function and drug action. Genome Biol 11:R30

    Article  PubMed  Google Scholar 

  71. Han S, Kim D (2008) Inference of protein complex activities from chemical-genetic profile and its applications: predicting drug-target pathways. PLoS Comput Biol 4:e1000162

    Article  PubMed  Google Scholar 

  72. Hoon S, Smith AM, Wallace IM, Suresh S, Miranda M, et al. (2008) An integrated platform of genomic assays reveals small-molecule bioactivities. Nat Chem Biol 4:498–506

    Article  PubMed  CAS  Google Scholar 

  73. Whitehurst AW, Bodemann BO, Cardenas J, Ferguson D, Girard L, et al. (2007) Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature 446:815–819

    Article  PubMed  CAS  Google Scholar 

  74. MacKeigan JP, Murphy LO, Blenis J (2005) Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nat Cell Biol 7:591–600

    Article  PubMed  CAS  Google Scholar 

  75. Castoreno AB, Smurnyy Y, Torres AD, Vokes MS, Jones TR, et al. (2010) Small molecules discovered in a pathway screen target the Rho pathway in cytokinesis. Nat Chem Biol 6:457–463

    Article  PubMed  CAS  Google Scholar 

  76. Kapitzky L, Beltrao P, Berens TJ, Gassner N, Zhou C, et al. (2010) Cross-species chemogenomic profiling reveals evolutionarily conserved drug mode of action. Mol Syst Biol 6:1–14

    Article  Google Scholar 

  77. Borisy Aa, Elliott PJ, Hurst NW, Lee MS, Lehar J, et al. (2003) Systematic discovery of multicomponent therapeutics. Proc Natal Acad Sci USA 100:7977–7982

    Article  Google Scholar 

  78. Lehár J, Krueger AS, Avery W, Heilbut AM, Johansen LM, et al. (2009) Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat Biotechnol 27:659–666

    Article  PubMed  Google Scholar 

  79. Spitzer M, Griffiths E, Blakely KM, Wildenhain J, Ejim L, et al. (2011) Cross-species discovery of syncretic drug combinations that potentiate the antifungal fluconazole. Mol Syst Biol 7:499

    Article  PubMed  Google Scholar 

  80. Jansen G, Lee AY, Epp E, Fredette A, Surprenant J, et al. (2009) Chemogenomic profiling predicts antifungal synergies. Mol Syst Biol 5:338

    Article  PubMed  Google Scholar 

  81. Cokol M, Chua HN, Tasan M, Mutlu B, Weinstein ZB, et al. (2011) Systematic exploration of synergistic drug pairs. Mol Syst Biol 7:1–9

    Article  Google Scholar 

  82. Choi H, Larsen B, Lin Z-Y, Breitkreutz A, Mellacheruvu D, et al. (2011) SAINT: probabilistic scoring of affinity purification-mass spectrometry data. Nat Meth 8:70–73

    Article  CAS  Google Scholar 

  83. Brenner S (2006) The Next 100 Years of Biology (lecture). Available: http://www.mc.vanderbilt.edu/discoveryseries/speaker.html?sid=1

  84. Wagner A (2005) Distributed robustness versus redundancy as causes of mutational robustness. BioEssays 27:176–188

    Article  PubMed  CAS  Google Scholar 

  85. Tsong AE, Tuch BB, Li H, Johnson AD (2006) Evolution of alternative transcriptional circuits with identical logic. Nature 443:415–420

    Article  PubMed  CAS  Google Scholar 

  86. Drury LS, Diffley JFX (2009) Factors affecting the diversity of DNA replication licensing control in eukaryotes. Curr Biol 19:530–535

    Article  PubMed  CAS  Google Scholar 

  87. Haber JE, Koshland DE Jr. (1970) An evaluation of the relatedness of proteins based on comparison of amino acid sequences. J Mol Biol 50(3):617–39

    Article  PubMed  CAS  Google Scholar 

  88. Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, et al. (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natal Acad Sci USA 98:4569–4574

    Article  CAS  Google Scholar 

  89. Uetz P, Giot L, Cagney G, Mansfield T a, Judson RS, et al. (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623–627

    Google Scholar 

  90. Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, et al. (2003) A protein interaction map of Drosophila melanogaster. Science (New York, NY) 302:1727–1736

    Google Scholar 

  91. Li S, Armstrong CM, Bertin N, Ge H, Milstein S, et al. (2004) A map of the interactome network of the metazoan C. elegans. Science (New York, NY) 303:540–543

    Google Scholar 

  92. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, et al. (2005) A human protein-protein interaction network: a resource for annotating the proteome. Cell 122:957–968

    Article  PubMed  CAS  Google Scholar 

  93. Rual J-F, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, et al. (2005) Towards a proteome-scale map of the human protein-protein interaction network. Nature 437:1173–1178

    Article  PubMed  CAS  Google Scholar 

  94. Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, et al. (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415:180–183

    Article  PubMed  CAS  Google Scholar 

  95. Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, et al. (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440:637–643

    Article  PubMed  CAS  Google Scholar 

  96. Gavin A-C, Bösche M, Krause R, Grandi P, Marzioch M, et al. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147

    Article  PubMed  CAS  Google Scholar 

  97. Ewing RM, Chu P, Elisma F, Li H, Taylor P, et al. (2007) Large-scale mapping of human protein-protein interactions by mass spectrometry. Mol Syst Biol 3:89

    Article  PubMed  Google Scholar 

  98. Butland G, Peregrín-Alvarez JM, Li J, Yang W, Yang X, et al. (2005) Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433(7025):531–537

    Article  PubMed  CAS  Google Scholar 

  99. Guruharsha KG, Rual J-F, Zhai B, Mintseris J, Vaidya P, et al. (2011) A protein complex network of Drosophila melanogaster. Cell 147:690–703

    Article  PubMed  CAS  Google Scholar 

  100. Jäger S, Cimermancic P, Gulbahce N, Johnson JR, McGovern K E, Clarke SC, Shales M, et al. (2011) Global landscape of HIV–human protein complexes. Nature:1–6

    Google Scholar 

Download references

Acknowledgments

We thank J. Haber for critically reading the manuscript and funding from the NIH (GM082250, GM084448, GM084279, AI090935, GM081879, AI091575, GM098101). NJK is a Searle Scholar and Keck Young Investigator. PB is supported by the Human Frontiers Science Program. CR is supported by IRCSET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nevan J. Krogan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Beltrao, P., Ryan, C., Krogan, N.J. (2012). Comparative Interaction Networks: Bridging Genotype to Phenotype. In: Soyer, O. (eds) Evolutionary Systems Biology. Advances in Experimental Medicine and Biology, vol 751. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3567-9_7

Download citation

Publish with us

Policies and ethics