Skip to main content

Should I Stay or Should I Go? Trafficking of Sub-Lytic MAC in the Retinal Pigment Epithelium

  • Conference paper
  • First Online:
Book cover Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 801))

Abstract

Assembly of sub-lytic C5b-9 membrane attack complexes (MAC) on the plasma membrane of retinal pigment epithelial cells contributes to the pathogenesis of age-related macular degeneration. C5b-9 pores induce calcium influx, which activates signaling pathways that compromise cell function. Mechanisms that limit sub-lytic MAC activity include: cell surface complement regulatory proteins CD46, CD55, and CD59 that inhibit specific steps of MAC formation; elimination of assembled MAC by exocytosis of membrane vesicles or by endocytosis and subsequent lysosomal degradation; and rapid resealing of pores by the exocytosis of lysosomes. Aging in the post-mitotic retinal pigment epithelium is characterized by the accumulation of cellular debris called lipofuscin, which has also been associated with retinal diseases such as age-related macular degeneration. Lipofuscin has been shown to activate complement components both in vitro and in vivo, suggesting that it could contribute complement-mediated dysfunction in the retinal pigment epithelium. Here, we discuss emerging evidence that vesicular trafficking in the retinal pigment epithelium is critical for efficient removal of MAC from the cell surface and for limiting inflammation in the outer retina.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMD:

Age-related macular degeneration

ESCRT:

Endosomal sorting complexes required for transport

GPI:

Glycosylphosphatidylinositol

MAC:

Membrane attack complex

RPE:

Retinal pigment epithelium

SNARE:

Soluble N-ethylmaleimide sensitive factor Attachment protein Receptor

References

  1. Swaroop A, Chew EY, Rickman CB, Abecasis GR (2009) Unraveling a multifactorial late-onset disease: from genetic susceptibility to disease mechanisms for age-related macular degeneration. Annu Rev Genomics Hum Genet 10:19–43

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Bird AC (2010) Therapeutic targets in age-related macular disease. J Clin Invest 120(9):3033–3041

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Bok D (2005) Evidence for an inflammatory process in age-related macular degeneration gains new support. Proc Natl Acad Sci U S A 102(20):7053–7054

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Ambati J, Fowler BJ (2012) Mechanisms of age-related macular degeneration. Neuron 75(1):26–39

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Anderson DH, Mullins RF, Hageman GS, Johnson LV (2002) A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol 134(3):411–431

    Article  PubMed  CAS  Google Scholar 

  6. Hageman GS, Anderson DH, Johnson LV, Hancox LS, Taiber AJ, Hardisty LI, Hageman JL, Stockman HA, Borchardt JD, Gehrs KM, Smith RJ, Silvestri G, Russell SR, Klaver CC, Barbazetto I, Chang S, Yannuzzi LA, Barile GR, Merriam JC, Smith RT, Olsh AK, Bergeron J, Zernant J, Merriam JE, Gold B, Dean M, Allikmets R (2005) A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci U S A 102(20):7227–7232

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Cole DS, Morgan BP (2003) Beyond lysis: how complement influences cell fate. Clin Sci 104(5):455–466

    Article  PubMed  CAS  Google Scholar 

  8. Bohana-Kashtan O, Ziporen L, Donin N, Kraus S, Fishelson Z (2004) Cell signals transduced by complement. Mol Immunol 41(6-7):583–597

    Article  PubMed  CAS  Google Scholar 

  9. Lueck K, Wasmuth S, Williams J, Hughes TR, Morgan BP, Lommatzsch A, Greenwood J, Moss SE, Pauleikhoff D (2011) Sub-lytic C5b-9 induces functional changes in retinal pigment epithelial cells consistent with age-related macular degeneration. Eye 25(8):1074–1082

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Kunchithapautham K, Rohrer B (2011) Sublytic membrane-attack-complex (MAC) activation alters regulated rather than constitutive vascular endothelial growth factor (VEGF) secretion in retinal pigment epithelium monolayers. J Biol Chem 286(27):23717–23724

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Radu RA, Hu J, Yuan Q, Welch DL, Makshanoff J, Lloyd M, McMullen S, Travis GH, Bok D (2011) Complement system dysregulation and inflammation in the retinal pigment epithelium of a mouse model for Stargardt macular degeneration. J Biol Chem 286(21):18593–18601

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Sparrow JR, Ueda K, Zhou J (2012) Complement dysregulation in AMD: RPE-Bruch’s membrane-choroid. Mol Aspects Med 33(4):436–445

    Article  PubMed  CAS  Google Scholar 

  13. Pilzer D, Gasser O, Moskovich O, Schifferli JA, Fishelson Z (2005) Emission of membrane vesicles: roles in complement resistance, immunity and cancer. Springer Semin Immunopathol 27(3):375–387

    Article  PubMed  CAS  Google Scholar 

  14. Longhi MP, Harris CL, Morgan BP, Gallimore A (2006)Holding T cells in check-a new role for complement regulators? Trends Immunol 27(2):102–108

    Article  PubMed  CAS  Google Scholar 

  15. Meri S, Morgan BP, Davies A, Daniels RH, Olavesen MG, Waldmann H, Lachmann PJ (1990) Human protectin (CD59), an 18,000-20,000 MW complement lysis restricting factor, inhibits C5b-8 catalysed insertion of C9 into lipid bilayers. Immunology 71(1):1–9

    PubMed Central  PubMed  CAS  Google Scholar 

  16. Mayor S, Riezman H (2004) Sorting GPI-anchored proteins. Nat Rev Mol Cell Biol 5(2):110–120

    Article  PubMed  CAS  Google Scholar 

  17. Mayor S, Sabharanjak S, Maxfield FR (1998) Cholesterol-dependent retention of GPI-anchored proteins in endosomes. EMBO J 17(16):4626–4638

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Ebrahimi KB, Fijalkowski N, Cano M, Handa JT (2012) Decreased membrane complement regulators in the retinal pigmented epithelium contributes to age-related macular degeneration. J Pathol 229(5):729–742

    Article  CAS  Google Scholar 

  19. Vogt SD, Curcio CA, Wang L, Li CM, McGwin G Jr, Medeiros NE, Philp NJ, Kimble JA, Read RW (2011) Retinal pigment epithelial expression of complement regulator CD46 is altered early in the course of geographic atrophy. Exp Eye Res 93(4):413–423

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Lakkaraju A, Rodriguez-Boulan E (2008) Itinerant exosomes: Emerging roles in cell and tissue polarity. Trends Cell Biol 18:199–209

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Thery C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nature reviews. Immunology 9(8):581–593

    PubMed  CAS  Google Scholar 

  22. Bellingham SA, Guo BB, Coleman BM, Hill AF (2012) Exosomes: vehicles for the transfer of toxic proteins associated with neurodegenerative diseases? Frontiers Physiol 3:124

    Article  CAS  Google Scholar 

  23. Clayton A, Harris CL, Court J, Mason MD, Morgan BP (2003) Antigen-presenting cell exosomes are protected from complement-mediated lysis by expression of CD55 and CD59. Eur J Immunol 33(2):522–531

    Article  PubMed  CAS  Google Scholar 

  24. Scolding NJ, Morgan BP, Houston WA, Linington C, Campbell AK, Compston DA (1989) Vesicular removal by oligodendrocytes of membrane attack complexes formed by activated complement. Nature 339(6226):620–622

    Article  PubMed  CAS  Google Scholar 

  25. Moskovich O, Fishelson Z (2007) Live cell imaging of outward and inward vesiculation induced by the complement c5b-9 complex. J Biol Chem 282(41):29977–29986

    Article  PubMed  CAS  Google Scholar 

  26. Idone V, Tam C, Andrews NW (2008) Two-way traffic on the road to plasma membrane repair. Trends Cell Biol 18(11):552–559

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Andrews NW (2002) Lysosomes and the plasma membrane: trypanosomes reveal a secret relationship. J Cell Biol 158(3):389–394

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Gross JB Jr, Myers BM, Kost LJ, Kuntz SM, LaRusso NF (1989) Biliary copper excretion by hepatocyte lysosomes in the rat. Major excretory pathway in experimental copper overload. J Clin Invest 83(1):30–39

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Klein D, Bussow H, Fewou SN, Gieselmann V (2005) Exocytosis of storage material in a lysosomal disorder. Biochem Biophys Res Commun 327(3):663–667

    Article  PubMed  CAS  Google Scholar 

  30. Rao SK, Huynh C, Proux-Gillardeaux V, Galli T, Andrews NW (2004) Identification of SNAREs involved in synaptotagmin VII-regulated lysosomal exocytosis. J Biol Chem 279(19):20471–20479

    Article  PubMed  CAS  Google Scholar 

  31. Xu J, Diaz F, Carvajal-Gonzalez JM, Mazzoni F, Schreiner R, Rodriguez-Boulan E, Lakkaraju A (2013) Mechanism of polarized lysosome exocytosis in epithelial cells. J Cell Sci 2013:In-Press

    Google Scholar 

  32. Moskovich O, Herzog LO, Ehrlich M, Fishelson Z (2012) Caveolin-1 and dynamin-2 are essential for removal of the complement C5b-9 complex via endocytosis. J Biol Chem 287(24):19904–19915

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Corrotte M, Fernandes MC, Tam C, Andrews NW (2012) Toxin pores endocytosed during plasma membrane repair traffic into the lumen of MVBs for degradation. Traffic 13(3):483–494

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Lakkaraju A, Finnemann SC, Rodriguez-Boulan E (2007) The lipofuscin fluorophore A2E perturbs cholesterol metabolism in retinal pigment epithelial cells. Proc Natl Acad Sci U S A 104(26):11026–11031

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the American Health Assistance Foundation (M2009093), Carl Marshall and Mildred Almen Reeves Foundation, Karl Kirchgessner Foundation, Research to Prevent Blindness Career Development Award, and Retina Research Foundation Rebecca Meyer Brown Professorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aparna Lakkaraju .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this paper

Cite this paper

Lakkaraju, A., Toops, K., Xu, J. (2014). Should I Stay or Should I Go? Trafficking of Sub-Lytic MAC in the Retinal Pigment Epithelium. In: Ash, J., Grimm, C., Hollyfield, J., Anderson, R., LaVail, M., Bowes Rickman, C. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 801. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3209-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3209-8_34

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3208-1

  • Online ISBN: 978-1-4614-3209-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics