Skip to main content

Morphology of Different Electrodeposited Pure Metal Powders

  • Chapter
  • First Online:

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 54))

Abstract

As mentioned in other chapters, metal powders obtained by electrolytic processes are mainly dendrites which can spontaneously fall off or can be removed from the electrode by tapping or other similar techniques [1]. Also, powder particles can have other morphological forms, such as flakes or needles, fibrous or spongy, and needle or cauliflower-like ones, and the shape of powder particles depends on the electrodeposition conditions and the nature of the metal.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pavlović MG, Popov KI (2005) Electrochem Encycl. http://electrochem.cwru.edu/ed/encycl/

  2. Winand R (1998) Electrochim Acta 43:2925

    Article  CAS  Google Scholar 

  3. Price PB, Vermilyea DA (1958) J Chem Phys 28:720

    Article  CAS  Google Scholar 

  4. Djokić SS, Nikolić ND, Živković PM, Popov KI, Djokić NS (2011) ECS Trans 33:7

    Article  Google Scholar 

  5. Popov KI, Krstajić NV, Popov SR (1984) Surf Technol 22:245

    Article  CAS  Google Scholar 

  6. Popov KI, Djokić SS, Grgur BN (2002) Fundamental aspects of electrometallurgy. Kluwer Academic/Plenum, New York

    Google Scholar 

  7. Nikolić ND, Popov KI, Pavlović LjJ, Pavlović MG (2006) J Electroanal Chem 588:88

    Article  Google Scholar 

  8. Nikolić ND, Popov KI, Pavlović LjJ, Pavlović MG (2006) Surf Coat Technol 201:560

    Article  Google Scholar 

  9. Nikolić ND, Popov KI, Pavlović LjJ, Pavlović MG (2007) Sensors 7:1

    Article  Google Scholar 

  10. Nikolić ND, Branković G, Pavlović MG, Popov KI (2008) J Electroanal Chem 621:13

    Article  Google Scholar 

  11. Nikolić ND, Popov KI (2010) Hydrogen co-deposition effects on the structure of electrodeposited copper. In: Djokić SS (ed) Electrodeposition: theory and practice, vol 48, Modern aspects of electrochemistry. Springer, New York, pp 1–70

    Google Scholar 

  12. Nikolić ND, Pavlović LjJ, Pavlović MG, Popov KI (2007) Electrochim Acta 52:8096

    Article  Google Scholar 

  13. Nikolić ND, Pavlović LjJ, Branković G, Pavlović MG, Popov KI (2008) J Serb Chem Soc 73:753

    Article  Google Scholar 

  14. Nikolić ND, Pavlović LjJ, Pavlović MG, Popov KI (2008) Powder Technol 185:195

    Article  Google Scholar 

  15. Nikolić ND, Branković G, Pavlović MG, Popov KI (2009) Electrochem Commun 11:421

    Article  Google Scholar 

  16. Nikolić ND, Branković G, Maksimović VM, Pavlović MG, Popov KI (2010) J Solid State Electrochem 14:331

    Article  Google Scholar 

  17. Nikolić ND, Branković G, Maksimović VM, Pavlović MG, Popov KI (2009) J Electroanal Chem 635:111

    Article  Google Scholar 

  18. Nikolić ND, Branković G, Popov KI (2011) Mater Chem Phys 125:587

    Article  Google Scholar 

  19. Nikolić ND, Branković G (2010) Electrochem Commun 12:740

    Article  Google Scholar 

  20. Nikolić ND, Branković G, Maksimović V (2012) J Solid State Electrochem 16:321

    Google Scholar 

  21. Popov KI, Vojnović M, Rikovski G (1968) Hemijska Industrija 8:1392 (in Serbian)

    Google Scholar 

  22. Trasatti S (1972) J Electroanal Chem 39:163

    Article  CAS  Google Scholar 

  23. Popov KI, Pavlović MG, Stojilković ER, Radmilović V (1996) J Serb Chem Soc 61:47

    CAS  Google Scholar 

  24. Pavlović MG, Maksimović MD, Popov KI, Kršul MB (1978) J Appl Electrochem 8:61

    Article  Google Scholar 

  25. Barton JL, Bockris JO’M (1962) Proc R Soc A268:485

    Article  Google Scholar 

  26. Bek RYu, Kudryavtsev NT (1961) Zh Prikl Khim 34:2013

    CAS  Google Scholar 

  27. Bek RYu, Kudryavtsev NT (1961) Zh Prikl Khim 34:2020

    CAS  Google Scholar 

  28. Arouete S, Blurton KF, Oswin HG (1969) J Electrochem Soc 116:166

    Article  CAS  Google Scholar 

  29. Popov KI, Keča DN, Anđelić MD (1978) J Appl Electrochem 8:19

    Article  CAS  Google Scholar 

  30. Popov KI, Anđelić MD, Keča DN (1978) Glasnik Hem Društva Beograd 43:67

    CAS  Google Scholar 

  31. Popov KI, Pavlović MG, Remović GŽ (1991) J Appl Electrochem 21:743

    Article  CAS  Google Scholar 

  32. Popov KI, Maksimović MD, Zečević SK, Stojić MR (1986) Surf Coat Technol 27:117

    Article  CAS  Google Scholar 

  33. Despić AR, Popov KI (1972) Transport controlled deposition and dissolution of metals. In: Conway BE, Bockris JO’M (eds) Modern aspects of electrochemistry, vol 7. Plenum, New York, pp 199–313

    Google Scholar 

  34. Popov KI, Maksimović MD (1989) Theory of the effect of electrodeposition at periodically changing rate on the morphology of metal deposition. In: Conway BE, Bockris JO’M, White RE (eds) Modern aspects of electrochemistry, vol 19. Plenum press, New York, pp 193–250

    Google Scholar 

  35. Popov KI, Pavlović MG, Jovićević JN (1989) Hydrometallurgy 23:127

    Article  CAS  Google Scholar 

  36. Romanov VV (1963) Zh Prikl Khim 36:1050

    CAS  Google Scholar 

  37. Romanov VV (1961) Zh Prikl Khim 34:2692

    CAS  Google Scholar 

  38. Romanov VV (1963) Zh Prikl Khim 36:1057

    CAS  Google Scholar 

  39. Popov KI, Maksimović MD, Simičić NV, Krstajić NV (1984) Surf Technol 22:159

    Article  CAS  Google Scholar 

  40. Vijh AK, Randin JP (1977) Surf Technol 5:257

    Article  CAS  Google Scholar 

  41. Nikolić ND, Lačnjevac U, Branković G. J Solid State Electrochem doi: 10.1007/s10008-011-1626-y

  42. Popov KI, Živković PM, Krstić SB, Nikolić ND (2009) Electrochim Acta 54:2924

    Article  CAS  Google Scholar 

  43. Popov KI, Živković PM, Nikolić ND (2010) The effect of morphology of activated electrodes on their electrochemical activity. In: Djokić SS (ed) Electrodeposition: theory and practice, vol 48, Modern aspects of electrochemistry. Springer, New York, pp 163–213

    Google Scholar 

  44. Bockris JO’M, Reddy AKN, Gamboa-Aldeco M (2000) Modern electrochemistry: fundamentals of electrodics, vol 2A, 2nd edn. Kluwer Academic/Plenum, New York, p 1107

    Google Scholar 

  45. Wranglen G (1960) Electrochim Acta 2:130

    Article  CAS  Google Scholar 

  46. Diggle JW, Despić AR, Bockris JO’M (1969) J Electrochem Soc 116:1503

    Article  CAS  Google Scholar 

  47. Popov KI, Krstajić NV, Čekerevac MI (1996) The mechanism of formation of coarse and disperse electrodeposits. In: White RE, Conway BE, Bockris JO’M (eds) Modern aspects of electrochemistry, vol 30. Plenum, New York, pp 261–312

    Google Scholar 

  48. Popov KI, Stojilković ER, Radmilović V, Pavlović MG (1997) Powder Technol 93:55

    Article  CAS  Google Scholar 

  49. Popov KI, Maksimović MD, Trnjančev JD, Pavlović MG (1981) J Appl Electrochem 11:239

    Article  CAS  Google Scholar 

  50. Popov KI, Pavlović MG, Maksimović MD (1982) J Appl Electrochem 12:525

    Article  CAS  Google Scholar 

  51. Pangarov NA (1964) Electrochim Acta 9:21

    Google Scholar 

  52. Pangarov NA, Vitkova SD (1966) Electrochim Acta 11:1733

    Article  CAS  Google Scholar 

  53. Popov KI, Čekerevac MI (1989) Surf Coat Technol 37:435

    Article  CAS  Google Scholar 

  54. Čekerevac MI, Popov KI (1989) Surf Coat Technol 37:441

    Article  Google Scholar 

  55. Calusaru A (1979) Electrodeposition of powders from solutions. Elsevier, New York, pp 363–389

    Google Scholar 

  56. Mathers, Turner (1932) British Patent No. 403281

    Google Scholar 

  57. Mathers (1932) Met Ind (NY) 30:321, 396, 368

    Google Scholar 

  58. Huppomann WJ, Dalal K (1986) Metallographic atlas of powder metallurgy. Werlag Schmid GmbH, pp 21–63

    Google Scholar 

  59. Kudryavtsev N, Petrova A (1932) Novosti tehniki, N.K.T.R 171

    Google Scholar 

  60. Hardy C, Mantell C (1937) French Patent No. 814500

    Google Scholar 

  61. Hardy C, Mantell C (1938) US Patent No. 2157699

    Google Scholar 

  62. Kudryavtsev N, Tereshkocitch E (1948) Zhur Prikl Khim 12:1298

    Google Scholar 

  63. Borok B, Olhov I (1948) Metallurgy of powders, pp 34–35

    Google Scholar 

  64. Kalaida T, Rozenzweig S (1936) Collect Works Chem Cells 1:48

    Google Scholar 

  65. Balshin M (1935) NIIMASH 12:5

    Google Scholar 

  66. Mantell C (1939) British Patent No. 503306

    Google Scholar 

  67. Casey H (1949) US Patent No. 2481079

    Google Scholar 

  68. Wranglen G (1950) Acta Polytechnica Electr Eng Ser 2:69

    Google Scholar 

  69. Sanvordenkar K, Tendolkar G (1954) J Indian Chem Soc Ind News Ed 17:13

    CAS  Google Scholar 

  70. Rozenzweig S (1936) Sov avt 46284

    Google Scholar 

  71. Gardam G (1951) Powder Metall 6:75; (1947) Spec Rep 38:3

    Google Scholar 

  72. Zhelibo EP, Aryupina KA, Natanson EM (1973) Powder Metall 122:14

    Google Scholar 

  73. Chu CM, Wan CC (1992) J Mater Sci 27:6700

    Article  CAS  Google Scholar 

  74. Fedorova O (1938) Zh Obsch Khim 8:1711

    CAS  Google Scholar 

  75. Hardy C, Mantell C (1937) French Patent No. 815500

    Google Scholar 

  76. Loshkarev M, Gernostaleva O, Kriukova A (1946) Zhur Prikl Khim 19:739

    Google Scholar 

  77. Levin A (1946) Zhur Prikl Khim 19:779

    CAS  Google Scholar 

  78. Hiruma K (1949) J Electrochem Soc Jpn 17:160

    CAS  Google Scholar 

  79. Drozdov B (1955) Zhur Prikl Khim 1:45

    Google Scholar 

  80. Nicol A (1946) CR 222:1043

    Google Scholar 

  81. Wranglen G (1950) Acta Polytechnica Electr Eng Ser 2:69

    Google Scholar 

  82. Kuroda M, Yto G, Shimizu Y (1953) Rep Sci Res (Japan) 29:429

    CAS  Google Scholar 

  83. Mantell C (1941) US Patent No. 2233103

    Google Scholar 

  84. Pavlović MG, Hadžismajlović DŽ, Popov KI (1991) Chem Ind 45:39

    Google Scholar 

  85. Santos JS, Matos R, Trivinho-Strixino F, Pereira EC (2007) Electrochim Acta 53:644

    Article  CAS  Google Scholar 

  86. Gabe DR (1997) J Appl Electrochem 27:908

    Article  CAS  Google Scholar 

  87. Palomar-Pardave M, Scharifker BR, Arce EM, Romero-Romo M (2005) Electrochim Acta 50:4736

    Article  CAS  Google Scholar 

  88. Rojas M, Fan CL, Miao HJ, Piron DL (1992) J Appl Electrochem 22:1135

    Article  CAS  Google Scholar 

  89. Diaz SL, Calderon JA, Barcia OE, Mattos OR (2008) Electrochim Acta 53:7426

    Article  CAS  Google Scholar 

  90. Jović VD, Jović BM, Pavlović MG (2006) Electrochim Acta 51:5468

    Article  Google Scholar 

  91. Jović VD, Jović BM, Maksimović V, Pavlović MG (2007) Electrochim Acta 52:4254

    Article  Google Scholar 

  92. Vogt H, Balzer RJ (2005) Electrochim Acta 50:2073

    Article  CAS  Google Scholar 

  93. Vogt H (1997) Electrochim Acta 42:2695

    Article  CAS  Google Scholar 

  94. Vogt H (1999) J Appl Electrochem 29:137

    Article  CAS  Google Scholar 

  95. Wüthrich R, Fascio V, Bleuler H (2004) Electrochim Acta 49:4005

    Article  Google Scholar 

  96. Wüthrich R, Bleuler H (2004) Electrochim Acta 49:1547

    Google Scholar 

  97. Wüthrich R, Commninellis Ch, Bleuler H (2005) Electrochim Acta 50:5242

    Article  Google Scholar 

  98. Lowenheim FA (1974) Modern electroplating, 3rd edn. Wiley-Interscience, New York

    Google Scholar 

  99. Jović VD, Maksimović V, Pavlović MG, Popov KI (2006) J Solid State Electrochem 10:373

    Article  Google Scholar 

  100. Popov KI, Krstić SB, Obradović MC, Pavlović MG, Pavlović LjJ, Ivanović ER (2004) J Serb Chem Soc 69:43

    Article  CAS  Google Scholar 

  101. Murashova IB, Pomosov AV (1989) Itogi nauki i tekhniki, Seria Elektrokhimiya, vol 30. VINITI, Moskva, p 90

    Google Scholar 

  102. Popov KI, Krstajić NV (1983) J Appl Electrochem 13:775

    Article  CAS  Google Scholar 

  103. Lačnjevac U, Jović BM, Jović VD (2009) Electrochim Acta 55:535

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Ministry of Education and Science of the Republic of Serbia through the Projects Nos. 1806/2002, 142032/2006, 172046/2011 and 172054/2011.

The authors are indebted to V.M. Maksimović from the Institute of Nuclear Sciences—Vinča, Belgrade, Serbia, for the XRD and SEM analyses of some investigated systems, as well as to Dr. G. Branković and E.R. Ivanović for SEM analysis of lead deposits.

The authors also wish to express their gratitude to M.G. Pavlović, Institute of Electrochemistry ICTM, Belgrade, Serbia, for useful discussions in the case of Co and Ni powders electrodeposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Jović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jović, V.D., Nikolić, N.D., Lačnjevac, U.Č., Jović, B.M., Popov, K.I. (2012). Morphology of Different Electrodeposited Pure Metal Powders. In: Djokić, S. (eds) Electrochemical Production of Metal Powders. Modern Aspects of Electrochemistry, vol 54. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2380-5_2

Download citation

Publish with us

Policies and ethics