Skip to main content

Bioinformatics Tools for the Multilocus Phylogenetic Analysis of Fungi

  • Chapter
  • First Online:
Book cover Laboratory Protocols in Fungal Biology

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Mycologists are generally identifying fungal communities by microscopic and macroscopic assessment. This conventional approach has several limitations due to the growth and environmental factors. Hence, molecular techniques and bioinformatics tools are essential in the field identification and characterization of fungi. Multilocus sequences are widely used in most of the bioinformatics tools and they can be used to recognize species boundaries. Nucleic acid and protein sequences-based analysis in fungal studies are revolutionizing the view on mycology. Numerous bioinformatics tools are available online to guide molecular biologists and biotechnologists. This chapter provides a guide to utilizing the available bioinformatics tools on the World Wide Web for sequence alignment, editing, and multilocus phylogenetic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available from http://www.clustal.org/clustal2.

  2. 2.

    Available at http://www.tcoffee.org/Projects_home_page/t_coffee_home_page.html.

  3. 3.

    from http://www.ebi.ac.uk/clustal.

  4. 4.

    Available from http://morphbank.ebc.uu.se/mrbayes/.

  5. 5.

    http://www.sinauer.com.

  6. 6.

    Available from http://paup.csit.fsu.edu/index.html.

  7. 7.

    Freely available from http://macclade.org/download.html.

  8. 8.

    Available from http://www.tree-puzzle.de/.

  9. 9.

    Available from http://taxonomy.zoology.gla.ac.uk/rod/treeview.html.

References

  1. Kolbert CP, Persing DH (1999) Ribosomal DNA sequencing as a tool for identification of bacterial pathogens. Curr Opin Microbiol 2:299–305

    Article  PubMed  CAS  Google Scholar 

  2. Abd-Elsalam KA (2003) Bioinformatics tools and guideline for PCR primer design. Afr J Biotechnol 2:91–95

    CAS  Google Scholar 

  3. Yan PV (2005) Bioinformatics: new research. Nova Science Publishers, New York

    Google Scholar 

  4. Pevsner J (2009) Bioinformatics and functional genomics. John Wiley & Sons, New York, pp 1–13

    Book  Google Scholar 

  5. Giovannoni SJ, Britschgi TB, Moyer CL, Field KG (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature 345:60

    Article  PubMed  CAS  Google Scholar 

  6. Gardes M, Bruns T (1993) ITS primers with enhanced specificity for Basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  PubMed  CAS  Google Scholar 

  7. Seifert KA (2009) Progress towards DNA barcoding of fungi. Mol Ecol Resour 9:83–89

    Article  PubMed  CAS  Google Scholar 

  8. Muller GM, Bills GF, Foster MS (2004) Biodiversity of fungi: inventory and monitoring methods. Elsevier Academic, San Diego, CA, 341

    Google Scholar 

  9. Thomas JW, Touchman JW, Blakesley RW, Bouffard GG, Beckstrom-Sternberg SM, Margulies EH et al (2003) Comparative analyses of multi-species sequences from targeted genomic regions. Nature 424:788–793

    Article  PubMed  CAS  Google Scholar 

  10. Tripathi KK (2000) Bioinformatics: the foundation of present and future biotechnology. Curr Sci 79:570–575

    CAS  Google Scholar 

  11. Jones NC, Zhi D, Raphael BJ (2006) AliWABA: alignment on the web through an A-Bruijn approach. Nucleic Acids Res 34:613–616

    Article  CAS  Google Scholar 

  12. Raphael B, Zhi S, Tang H, Pevzner P (2004) A novel method for multiple alignment of sequences with repeated and shuffled elements. Genome Res 14:2336–2346

    Article  PubMed  CAS  Google Scholar 

  13. Schwartz S, Zhang Z, Frazer KA, Smit A, Riemer C, Bouk J et al (2000) PipMaker—a web server for aligning two genomic DNA sequences. Genome Res 10:577–586

    Article  PubMed  CAS  Google Scholar 

  14. Baxevanis AD, Ouellette BFF (2001) Bioinformatics: a practical guide to the analysis of genes and proteins. John Wiley & Sons, Inc., New York

    Google Scholar 

  15. Schwartz A, Pachter L (2006) Multiple alignment by sequencing annealing. Bioinformatics 23:24–29

    Article  CAS  Google Scholar 

  16. Madden T (2005) The BLAST sequence analysis tool. In: McEntyre J, Ostell J (eds) NCBI handbook. National Library of Medicine, Bethesda, M. D

    Google Scholar 

  17. Parry-Smith DJ, Payne AWR, Michie AD, Attwood TK (1997) CINEMA—a novel colour interactive editor for multiple alignments. Gene 211: GC45–GC56

    Google Scholar 

  18. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H et al (2007) clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  19. Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG et al (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31:3497–3500

    Article  PubMed  CAS  Google Scholar 

  20. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  21. Crottini A, Dordel J, Köhler J, Glaw F, Schmitz A, Vences M (2009) A multilocus phylogeny of Malagasy scincid lizards elucidates the relationships of the fossorial genera Androngo and Cryptoscincus. Mol Phylogenet Evol 53:345–350

    Article  PubMed  CAS  Google Scholar 

  22. Ye SQ (2008) Bioinformatics: a practical approach. Chapman & Hall/CRC Press, Boca Raton, FL

    Google Scholar 

  23. Qi J, Luo H, Hao B (2004) CVTree: a phylogenetic tree reconstruction tool based on whole genomes. Nucleic Acids Res 32:W45–W47

    Article  PubMed  CAS  Google Scholar 

  24. Stoye J (1997) Divide-and-Conquer multiple sequence alignment. Dissertation thesis, Universitat Bielefeld, Bielefeld, Germany

    Google Scholar 

  25. Stoye J, Perrey SW, Dress AWM (1997) Improving the Divide-and-Conquer approach to sum-of-pairs multiple sequence alignment. Appl Math Lett 10:67–73

    Article  Google Scholar 

  26. Brinkmann A, Dress AMW, Perrey SW, Stoye J (1997) Two applications of the divide & conquer principle in the molecular sciences. Math Program 79:71–97

    Google Scholar 

  27. Stoye J, Moulton V, Dress AWM (1997) DCA: an efficient implementation of the Divide-and-Conquer multiple sequence alignment algorithm. CABIOS 13:625–626

    PubMed  CAS  Google Scholar 

  28. Stoye J (1998) Multiple sequence alignment with the Divide-and-Conquer method. Gene 211:GC45–GC56

    Article  PubMed  CAS  Google Scholar 

  29. Chikkagoudar S, Roshan U, Livesay DR (2007) eProbalign: generation and manipulation of multiple sequence alignments using partition function posterior probabilities. Nucleic Acids Res 35:W675–W677

    Article  PubMed  Google Scholar 

  30. Gouet P, Courcelle E, Stuart DI, Metoz F (1999) ESPript: multiple sequence alignments in PostScript. Bioinformatics 15:305–308

    Article  PubMed  CAS  Google Scholar 

  31. Jaroszewski L, Li Z, Cai XH, Weber C, Godzik A (2011) FFAS server: novel features and applications. Nucleic Acids Res 39:W38–W44

    Article  PubMed  CAS  Google Scholar 

  32. Jaroszewski L, Rychlewski L, Li Z, Li W, Godzik A (2005) FFAS03: a server for profile-profile sequence alignments. Nucleic Acids Res 33:W284–W288

    Article  PubMed  CAS  Google Scholar 

  33. Torarinsson E, Havgaard JH, Gorodkin J (2007) Multiple structural alignment and clustering of RNA sequences. Bioinformatics 23:926–932

    Article  PubMed  CAS  Google Scholar 

  34. Havgaard JH, Lyngsø RB, Gorodkin J (2005) The FOLDALIGN web server for pairwise structural RNA alignment and mutual motif search. Nucleic Acids Res 33:W650–W653

    Article  PubMed  CAS  Google Scholar 

  35. Nikhat Z, Mazumder R, Seto D (2001) Comparisons of gene co-linearity in genomes using GeneOrder2.0. Trends Biochem Sci 26:514–516

    Article  Google Scholar 

  36. Mazumder R, Kolaskar A, Seto D (2001) GeneOrder compares the order of genes in small genomes. Bioinformatics 17:162–166

    Article  PubMed  CAS  Google Scholar 

  37. Chalmel F, Lardenois A, Thompson JD, Muller J, Sahel JA, Léveillard T et al (2005) GOAnno: GO annotation based on multiple alignment. Bioinformatics 21:2095–2096

    Article  PubMed  CAS  Google Scholar 

  38. Brodie R, Roper RL, Upton C (2004) JDotter: a Java interface to multiple dotplots generated by dotter. Bioinformatics 20:279–281

    Article  PubMed  CAS  Google Scholar 

  39. Huang X, Miller W (1991) The lalign program implements the algorithm of Huang and Miller. Adv Appl Math 12:337–357

    Article  Google Scholar 

  40. Barker D (2004) LVB: parsimony and simulated annealing in the search for phylogenetic trees. Bioinformatics 20:274–275

    Article  PubMed  CAS  Google Scholar 

  41. Toh K (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9:286–298

    Article  PubMed  CAS  Google Scholar 

  42. Toh K (2010) Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 26: 1899–1900

    Article  PubMed  CAS  Google Scholar 

  43. Zhu H, Schein CH, Braun W (2000) MASIA: recognition of common patterns and properties in multiple aligned protein sequences. Bioinformatics 16:950–951

    Article  PubMed  CAS  Google Scholar 

  44. Sebastian W, Reiche K, Hofacker IL, Stadler PF, Backofen R (2007) Inferring non-coding RNA families and classes by means of genome-scale structure-based clustering. PLoS Comput Biol 3(4):e65

    Article  CAS  Google Scholar 

  45. Stothard P (2000) The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 28:1102–1104

    PubMed  CAS  Google Scholar 

  46. Lassmann T, Sonnhammer ELL (2006) Kalign, Kalignvu and Mumsa: web servers for multiple sequence alignment. Nucleic Acids Res 34: W596–W599

    Article  PubMed  CAS  Google Scholar 

  47. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed  CAS  Google Scholar 

  48. Tsai YT, Huang YP, Yu CT, Lu CL (2004) MuSiC: a tool for multiple sequence alignment with constraints. Bioinformatics 20:2309–2311

    Article  PubMed  CAS  Google Scholar 

  49. DeSantis TZ Jr, Hugenholtz P, Keller K, Brodie EL, Larsen N, Piceno YM et al (2006) NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res 34: W394–W399

    Article  PubMed  CAS  Google Scholar 

  50. Rognes T (2001) ParAlign: a parallel sequence alignment algorithm for rapid and sensitive database searches. Nucleic Acids Res 29:1647–1652

    Article  PubMed  CAS  Google Scholar 

  51. Sæbø PE, Andersen SM, Myrseth J, Laerdahl JK, Rognes T (2005) PARALIGN: rapid and sensitive sequence similarity searches powered by parallel computing technology. Nucleic Acids Res 33:W535–W539

    Article  PubMed  CAS  Google Scholar 

  52. Rognes T, Andersen SM (2005) PARALIGN user’s guide. Sencel Bioinformatics AS, Oslo, Norway

    Google Scholar 

  53. Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217

    Article  PubMed  CAS  Google Scholar 

  54. Mignone F, Horner DS, Pesole G (2004) WebVar: a resource for the rapid estimation of relative site variability from multiple sequence alignments. Bioinformatics 20:1331–1333

    Article  PubMed  CAS  Google Scholar 

  55. Noe L, Kucherov G (2005) YASS: enhancing the sensitivity of DNA similarity search. Nucleic Acids Res 33:W540–W543

    Article  PubMed  CAS  Google Scholar 

  56. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  57. Higgins DG, Sharp PM (1988) CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73:237–244

    Article  PubMed  CAS  Google Scholar 

  58. Sze SH, Lu Y, Yang Q (2006) A polynomial time solvable formulation of multiple sequence alignment. J Comput Biol 13:309–319

    Article  PubMed  CAS  Google Scholar 

  59. Higgins DG, Bleasby AJ, Fuchs R (1992) CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci 8:189–191

    PubMed  CAS  Google Scholar 

  60. Higgins DG, Thompson JD, Gibson TJ (1996) Using CLUSTAL for multiple sequence alignments. Methods Enzymol 266:383–402

    Article  PubMed  CAS  Google Scholar 

  61. Notredame C (2001) User documentation and F.A.Q. T-COFFEE (1.35) MOCCA. http://www.bioinformatics.nl/tools/t_coffee_doc.html. Accessed 10 Sept 2011

  62. Poirot O, O’Toole E, Notredame C (2003) Tcoffee@igs: a web server for computing, evaluating and combing multiple sequence alignment. Nucleic Acids Res 31:3503–3506

    Article  PubMed  CAS  Google Scholar 

  63. Liu L, Pearl DK (2007) Species trees from gene trees: reconstructing Bayesian posterior distributions of a species phylogeny using estimated gene tree distributions. Syst Biol 56:504–514

    Article  PubMed  CAS  Google Scholar 

  64. Edwards SV, Liu L, Pearl DK (2007) High resolution species trees without concatenation. PNAS 104:5936–5941

    Article  PubMed  CAS  Google Scholar 

  65. Ronquist F, Huelsenbeck JP (2003) MrBayes version 3.0: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  66. Liu L (2008) BEST: Bayesian estimation of species trees under the coalescent model. Bioinformatics 24:2542–2543

    Article  PubMed  CAS  Google Scholar 

  67. Liu L, Pearl DK, Brumfield RT, Edwards SV (2008) Estimating species trees using multiple-allele DNA sequence data. Evolution 62:2080–2091

    Article  PubMed  Google Scholar 

  68. Brito PH, Edwards SV (2009) Multilocus phylogeography and phylogenetics using sequence-based markers. Genetica 135:439–455

    Article  PubMed  Google Scholar 

  69. Nichols R (2001) Gene trees and species trees are not the same. Trends Ecol Evol 16:358–364

    Article  PubMed  Google Scholar 

  70. Rannala B, Yang Z (2003) Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. Genetics 164:1645–1656

    PubMed  CAS  Google Scholar 

  71. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equations of state calculations by fast computing machines. J Chem Phys 21:1087–1091

    Article  CAS  Google Scholar 

  72. Huelsenbeck JP (2002) Testing a covariotide model of DNA substitution. Mol Biol Evol 19:698–707

    Article  PubMed  CAS  Google Scholar 

  73. Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97–109

    Article  Google Scholar 

  74. Larget B, Simon D (1999) Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol Biol Evol 16:750–759

    Article  CAS  Google Scholar 

  75. Yang Z, Rannala B (1997) Bayesian phylogenetic inference using DNA sequences: a Markov chain Monte carlo method. Mol Biol Evol 14:717–724

    Article  PubMed  CAS  Google Scholar 

  76. Romeralo M, Baldauf SL, Cavender JC (2009) A new species of cellular slime mold from southern Portugal based on morphology, ITS and SSU sequences. Mycologia 101:269–274

    Article  PubMed  CAS  Google Scholar 

  77. Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference in phylogenetic trees. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  78. Swofford DL, Olsen GJ, Waddell PJ, Hillis DM (1996) Phylogenetic inference. In: Hillis DM, Moritz C, Mable BK (eds) Molecular systematics. Sinauer Associates, Sunderland, MA, pp 407–514

    Google Scholar 

  79. Wilgenbusch JC, Swofford D (2003) Inferring evolutionary trees with PAUP*. Curr Protoc Bioinformatics 6:21–28

    Google Scholar 

  80. Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland, USA

    Google Scholar 

  81. Overton BE, Stewart EL, Geiser DM, Jaklitsch WM (2006) Systematics of Hypocrea citrina and related taxa. Stud Mycol 56:11–38

    Google Scholar 

  82. Huang T, Yeh Y, Tzeng DD (2010) Heteroduplex mobility assay for identification and phylogenetic analysis of anthracnose fungi. J Phytopathol 158:46–55

    Article  CAS  Google Scholar 

  83. Grünig CR, Duò A, Sieber T, Holdenrieder O (2008) Assignment of species rank to six reproductively isolated cryptic species of the Phialocephala fortinii s.l.-Acephala applanata species complex. Mycologia 100:47–67

    Article  PubMed  Google Scholar 

  84. Sung G, Sung J, Hywel-Jones NL, Spatafora JW (2007) A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): identification of localized incongruence using a combinational bootstrap approach. Mol Phylogenet Evol 44:1204–1223

    Article  PubMed  CAS  Google Scholar 

  85. Brenn N, Menkis A, Grünig CR, Sieber TN, Holdenrieder O (2008) Community structure of Phialocephala fortiniis. lat. in European tree nurseries, and assessment of the potential of the seedlings as dissemination vehicles. Mycol Res 112:650–662

    Article  PubMed  CAS  Google Scholar 

  86. Bomberg M, Timonen S (2009) Effect of tree species and mycorrhizal colonization on the archaeal population of Boreal Forest rhizospheres. Appl Environ Microbiol 75:308–315

    Article  PubMed  CAS  Google Scholar 

  87. Grebenc T, Martín MP, Kraigher H (2009) Ribosomal ITS diversity among the European species of the genus Hydnum (Hydnaceae). Anales del Jardín Botánico de Madrid 66S1:121–132

    Article  Google Scholar 

  88. Maddison DR, Maddison WP (2000) MacClade 4: analysis of phylogeny and character evolution. Version 4.0. Sinauer Associates, Sunderland, Massachusetts

    Google Scholar 

  89. Simmons MP, Bailey CD, Nixon KC (2000) Phylogeny reconstruction using duplicate genes. Mol Biol Evol 17:469–473

    Article  PubMed  CAS  Google Scholar 

  90. Wang Z, Nilsson RH, Lopez-Giraldez F, Zhuang W, Dai Y, Johnston PR et al (2011) Tasting soil fungal diversity with earth tongues: phylogenetic test of SATé alignments for environmental ITS data. PLoS One 6:e19039

    Article  PubMed  CAS  Google Scholar 

  91. James TY, Letcher PM, Longcore JE, Mozley-Standridge SE, Porter D, Powell MJ et al (2006) A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota). Mycologia 98:860–871

    Article  PubMed  Google Scholar 

  92. Little AEF, Currie CR (2007) Symbiotic complexity: discovery of a fifth symbiont in the attine ant–microbe symbiosis. Biol Lett 3:501–504

    Article  PubMed  Google Scholar 

  93. Kim SY, Park SY, Ko KS, Jung HS (2003) Phylogenetic analysis of Antrodia and related taxa based on partial mitochondrial SSU rDNA sequences. Antonie Van Leeuwenhoek 83:81–88

    Article  PubMed  CAS  Google Scholar 

  94. Suh S, Noda H, Blackwell M (2001) Insect symbiosis: derivation of yeast-like endosymbionts within an entomopathogenic filamentous lineage. Mol Biol Evol 18:995–1000

    Article  PubMed  CAS  Google Scholar 

  95. Schultz TR, Brady SG (2008) Major evolutionary transitions in ant agriculture. PNAS 105: 5435–5440

    Article  PubMed  CAS  Google Scholar 

  96. Reeb V, Lutzoni F, Roux C (2004) Contribution of RPB 2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycotina, Fungi) with special emphasis on the lichen-forming Acarosporaceae and evolution of polyspory. Mol Phylogenet Evol 32:1036–1060

    Article  PubMed  CAS  Google Scholar 

  97. Lutzoni F, Kauff F, Cox CJ, McLaughlin D, Celio G, Dentinger B et al (2004) Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. Am J Bot 91:1446–1480

    Article  PubMed  Google Scholar 

  98. Bidochka MJ, St Leger RJ, Stuart A, Gowanlock K (1999) Nuclear rDNA phylogeny in the fungal genus Verticillium and its relationship to insect and plant virulence, extracellular proteases and carbohydrases. Microbiology 145:955–963

    Article  PubMed  CAS  Google Scholar 

  99. U’ren JM, Dalling JW, Gallery RE, Maddison DR, Davis EC, Gibson CM et al (2009) Diversity and evolutionary origins of fungi associated with seeds of a neotropical pioneer tree: a case study for analysing fungal environmental samples. Mycol Res 113:432–449

    Article  PubMed  CAS  Google Scholar 

  100. Berbee ML (2001) The phylogeny of plant and animal pathogens in the Ascomycota. Physiol Mol Plant Pathol 59:165–187

    Article  CAS  Google Scholar 

  101. Gerardo NM, Mueller UG, Price SL, Currie CR (2004) Exploiting a mutualism: parasite specialization on cultivars within the fungus-growing ant symbiosis. Proc Biol Sci 271:1791–1798

    Article  PubMed  CAS  Google Scholar 

  102. Schmidt HA (2009) Testing tree topologies. In: Lemey P, Salemi M, Vandamme AM (eds) The phylogenetic handbook: a practical approach to phylogenetic analysis and hypothesis testing. Cambridge University Press, Cambridge, U.K., pp 381–404

    Chapter  Google Scholar 

  103. Schmidt HA, von Haeseler A (2009) Phylogenetic inference using maximum likelihood methods. In: Lemey P, Salemi M, Vandamme AM (eds) The phylogenetic handbook: a practical approach to phylogenetic analysis and hypothesis testing. Cambridge University Press, Cambridge, U.K., pp 181–209

    Chapter  Google Scholar 

  104. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  PubMed  CAS  Google Scholar 

  105. Felsenstein J (1988) Phylogenies from molecular sequences: inference and reliability. Annu Rev Genet 22:521–565

    Article  PubMed  CAS  Google Scholar 

  106. Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 29:170–179

    Article  PubMed  CAS  Google Scholar 

  107. Strimmer K, von Haeseler A (1996) Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. Mol Biol Evol 13:964–969

    Article  CAS  Google Scholar 

  108. Strimmer K, Goldman N, von Haeseler A (1997) Bayesian probabilities and quartet puzzling. Mol Biol Evol 14:210–213

    Article  CAS  Google Scholar 

  109. Strimmer K, von Haeseler A (1997) Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment. Proc Natl Acad Sci U S A 94:6815–6819

    Article  PubMed  CAS  Google Scholar 

  110. Trelles O (2001) On the parallelisation of bioinformatics applications. Brief Bioinform 2:181–194

    Article  PubMed  CAS  Google Scholar 

  111. Schmidt HA, Petzold E, Vingron M, von Haeseler A (2003) Molecular phylogenetics: parallelized parameter estimation and quartet puzzling. J Parallel Distrib Comput 63:719–727

    Article  Google Scholar 

  112. Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504

    Article  PubMed  CAS  Google Scholar 

  113. Petzold E, Merkle D, Middendorf M, von Haeseler A, Schmidt HA (2006) Phylogenetic parameter estimation on COWs. In: Zomaya AY (ed) Parallel computing for bioinformatics and computational biology. John Wiley & Sons, New York, pp 347–368

    Google Scholar 

  114. Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devarajan Thangadurai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Thangadurai, D., Sangeetha, J. (2013). Bioinformatics Tools for the Multilocus Phylogenetic Analysis of Fungi. In: Gupta, V., Tuohy, M., Ayyachamy, M., Turner, K., O’Donovan, A. (eds) Laboratory Protocols in Fungal Biology. Fungal Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2356-0_57

Download citation

Publish with us

Policies and ethics