Skip to main content

New Directions in Information Matrix Testing: Eigenspectrum Tests

  • Chapter
  • First Online:

Abstract

Model specification tests are essential tools for evaluating the appropriateness of probability models for estimation and inference. White (Econometrica, 50: 1–25, 1982) proposed that model misspecification could be detected by testing the null hypothesis that the Fisher information matrix (IM) Equality holds by comparing linear functions of the Hessian to outer product gradient (OPG) inverse covariance matrix estimators. Unfortunately, a number of researchers have reported difficulties in obtaining reliable inferences using White’s (Econometrica, 50: 1–25, 1982) original information matrix test (IMT). In this chapter, we extend White (Econometrica, 50: 1–25, 1982) to present a new generalized information matrix test (GIMT) theory and develop a new Adjusted Classical GIMT and five new Eigenspectrum GIMTs that compare nonlinear functions of the Hessian and OPG covariance matrix estimators. We then evaluate the level and power of these new GIMTs using simulation studies on realistic epidemiological data and find that they exhibit appealing performance on sample sizes typically encountered in practice. Our results suggest that these new GIMTs are important tools for detecting and assessing model misspecification, and thus will have broad applications for model-based decision making in the social, behavioral, engineering, financial, medical, and public health sciences.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agresti, A.: Categorical data analysis. New York: Wiley-Interscience, 2002.

    Book  Google Scholar 

  • Akaike, H.: “Information theory and an extension of the maximum likelihood principle”, 1973.

    Google Scholar 

  • Alonso, A., S. Litière, and G. Molenberghs: “A family of tests to detect misspecifications in the random-effects structure of generalized linear mixed models”, Computational Statistics and Data Analysis, 52(2008), 4474–4486.

    Article  Google Scholar 

  • Aparicio, T., and I. Villanua: “The asymptotically efficient version of the information matrix test in binary choice models. A study of size and power”, Journal of Applied Statistics, 28(2001), 167–182.

    Article  Google Scholar 

  • Archer, K. J., and S. Lemeshow: “Goodness-of-fit test for a logistic regression model fitted using survey sample data”, The Stata Journal, 6(2006), 97–105.

    Google Scholar 

  • Arminger, G., and M. E. Sobel: “Pseudo-maximum likelihood estimation of mean and covariance structures with missing data”, Journal of the American Statistical Association, 85(1990), 195–203.

    Article  Google Scholar 

  • Begg, M. D., and S. Lagakos: “On the consequences of model misspecification in logistic regression”, Environmental Health Perspectives, 87(1990), 69–75.

    Article  Google Scholar 

  • Bera, A. K., and S. Lee: “Information Matrix Test, Parameter Heterogeneity and ARCH: A Synthesis”, The Review of Economic Studies, 60(1993), 229–240.

    Article  Google Scholar 

  • Bertolini, G., R. D’Amico, D. Nardi, A. Tinazzi, and G. Apolone: “One model, several results: the paradox of the Hosmer-Lemeshow goodness-of-fit test for the logistic regression model”, Journal of Epidemiology and Biostatistics, 5(2000), 251–3.

    Google Scholar 

  • Box, E. P., G. M. Jenkins, and G. C. Reinsel: Time Series Analysis: Forecasting and Control. New York: John Wiley & Sons, 2008.

    Google Scholar 

  • Bozdogan, H.: “Akaike’s Information Criterion and Recent Developments in Information Complexity”, Journal of Mathematical Psychology, 44(2000), 62–91.

    Article  Google Scholar 

  • Bradley, A. P.: “The Use of the Area Under the ROC Curve in the Evaluation of Machine Learning Algorithms”, Pattern Recognition, 30(1997), 1145–1159.

    Article  Google Scholar 

  • Burnham, K. P., and D. R. Anderson: Model selection and multimodel inference : a practical information-theoretic approach. New York: Springer, 2002.

    Google Scholar 

  • Chesher, A.: “The information matrix test: Simplified calculation via a score test interpretation”, Economics Letters, 13(1983), 45–48.

    Article  Google Scholar 

  • Chesher, A., and R. Spady: “Asymptotic Expansions of the Information Matrix Test Statistic”, Econometrica, 59(1991), 787–815.

    Article  Google Scholar 

  • Christensen, R.: Log-Linear Models and Logistic Regression. Springer Texts in, Statistics, 1997.

    Google Scholar 

  • Collett, D.: Modelling Binary Data. Chapman & Hall/CRC, 2003.

    Google Scholar 

  • Copas, J.B.: “Unweighted sum of squares test for proportions”, Applied Statistics, 38(1989), 71–80.

    Article  Google Scholar 

  • Cox, D.R.: “Role of models in statistical analysis”, Statistical Science, 5(1990), 169–174.

    Article  Google Scholar 

  • Cramér, H.: Mathematical Methods of Statistics. Princeton: Princeton University Press, 1946.

    Google Scholar 

  • Davidson, R., and J. G. MacKinnon: “A New Form of the Information Matrix Test”, Econometrica, 60(1992), 145–157.

    Article  Google Scholar 

  • Davidson, R., and J. G. MacKinnon: “Graphical Methods for Investigating the Size and Power of Hypothesis Tests”, The Manchester School, 66(1998), 1–26.

    Article  Google Scholar 

  • Davison, A. C., D. V. Hinkley, and G. A. Young: “Recent Developments in Bootstrap Methodology”, Statistical Science, 18(2003), 141–157.

    Article  Google Scholar 

  • Davison, A. C., and C. L. Tsai: “Regression model diagnostics”, International Statistical Review, 60(1992), 337–353.

    Article  Google Scholar 

  • Deng, X., S. Wan, and B. Zhang: “An improved goodness-of-test for logistic regression models based on case-control data by random partition”, Communications in statistics: Simulations and computation, 38(2009), 233–243.

    Article  Google Scholar 

  • Dhaene, G., and D. Hoorelbeke: “The information matrix test with bootstrap-based covariance matrix estimation”, Economics Letters, 82(2004), 341–347.

    Article  Google Scholar 

  • DHHS: “The International Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM). DHHS Publication No. (PHS) 80–1280”, Washington D.C.: Department of Health and Human Services, 1980.

    Google Scholar 

  • Farrington, C.P.: “On assessing goodness of fit of generalized linear models to sparse data”, Journal of the Royal Statistical Society, Series B, 58(1996), 349–360.

    Google Scholar 

  • Fawcett, T.: “An introduction to ROC analysis”, Pattern Recognition Letters, 27(2006), 861–874.

    Article  Google Scholar 

  • Fisher, R.A.: “On the mathematical foundations of theoretical statistics”, Philosophical Transactions of the Royal Society of London, Series A, 222(1922), 309–368.

    Article  Google Scholar 

  • Gallini, J.: “Misspecifications that can result in path analysis structures”, Applied Psychological Measurement, 7(1983), 125–137.

    Article  Google Scholar 

  • Golden, R.M.: Mathematical methods for neural network analysis and design. Cambridge, Mass.: MIT Press, 1996.

    Google Scholar 

  • Golden, R. M.: “Statistical tests for comparing possibly misspecified and nonnested models”, Journal of Mathematical Psychology, 44(2000), 153–170.

    Article  Google Scholar 

  • Golden, R.M.: “Discrepancy risk model selection test theory for comparing possibly misspecified or nonnested models”, Psychometrika, 68(2003), 229–249.

    Article  Google Scholar 

  • Greene, W.: Econometric Analysis. New Jersey: Prentice-Hall, 2003.

    Google Scholar 

  • Hall, A.: “The Information Matrix Test for the Linear Model”, The Review of Economic Studies, 54(1987), 257–263.

    Article  Google Scholar 

  • Hamilton, J. D.: Time Series Analysis. Princeton, New Jersey: Princeton University Press, 1994.

    Google Scholar 

  • Hanley, J. A., and B. J. McNeil: “The Meaning and Use of the Area under a Receiver Operating Characteristic (ROC) Curve”, Radiology, 143(1982), 29–36.

    Google Scholar 

  • Harrell, F. E.: Regression modeling strategies : with applications to linear models, logistic regression, and survival analysis. New York: Springer, 2001.

    Google Scholar 

  • Hastie, T., R. Tibshirani, and J. Friedman: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Series in, Statistics, 2009.

    Google Scholar 

  • Hastie, T. J., and R. J. Tibshirani: “Generalized additive models”, Statistical Science, 3(1986), 297–318.

    Article  Google Scholar 

  • Hastie, T. J., and R. J. Tibshirani: Generalized Additive Models. Chapman & Hall/CRC, 1990.

    Google Scholar 

  • Henley, S. S., R. M. Golden, T. M. Kashner, and H. White: “Exploiting Hidden Structures in Epidemiological Data: Phase II Project”, (R44AA011607) National Institute on Alcohol Abuse and Alcoholism, 2000. http://www.sbir.gov/sbirsearch/detail/223679

  • Henley, S. S., R. M. Golden, T. M. Kashner, H. White, and R. D. Katz: “Improving Validity Measures for Alcohol-Related Models: Phase I Project”, (R43AA013351) National Institute on Alcohol Abuse and Alcoholism, 2001. http://www.sbir.gov/sbirsearch/detail/223681

  • Henley, S. S., R. M. Golden, T. M. Kashner, H. White, and R. D. Katz: “Robust Classification Methods for Categorical Regression: Phase I Project”, (R43AA014302) National Institute on Alcohol Abuse and Alcoholism, 2003. http://www.sbir.gov/sbirsearch/detail/223689

  • Henley, S. S., R. M. Golden, T. M. Kashner, H. White, and D. Paik: “Robust Classification Methods for Categorical Regression: Phase II Project”, (R44CA139607) National Cancer Institute, 2008. http://www.sbir.gov/sbirsearch/detail/223709

  • Henley, S. S., R. M. Golden, T. M. Kashner, H. White, L. Xuan, D. Paik, and R. D. Katz: “Improving Validity Measures in Alcohol-Related Models: Phase II Project”, (R44AA013351) National Institute on Alcohol Abuse and Alcoholism, 2004. http://www.sbir.gov/sbirsearch/detail/223693

  • Hilbe, J. M.: Logistic Regression Models. New York: Chapman and Hall, 2009.

    Google Scholar 

  • Horowitz, J.L.: “Bootstrap-based critical values for the information matrix test”, Journal of Econometrics, 61(1994), 395–411.

    Article  Google Scholar 

  • Horowitz, J.L.: “The bootstrap in econometrics”, Statistical Science, 18(2003), 211–218.

    Article  Google Scholar 

  • Hosmer, D. W., T. Hosmer, S. LeCessie, and S. Lemeshow: “A comparison of goodness-of-fit tests for the logistic regression model”, Statistics in Medicine, 16(1997), 965–980.

    Article  Google Scholar 

  • Hosmer, D. W., and S. Lemeshow: “A goodness-of-fit test for the multiple logistic regression model”, Communication in Statistics, A10(1980), 1043–1069.

    Article  Google Scholar 

  • Hosmer, D. W., and S. Lemeshow: Applied Logistic Regression. New York: John Wiley & Sons, 2000.

    Book  Google Scholar 

  • Hosmer, D. W., S. Lemeshow, and J. Klar: “Goodness-of-Fit Testing for Multiple Logistic Regression Analysis when the Estimated Probabilities are Small”, Biometrical Journal, 30(1988), 1–14.

    Article  Google Scholar 

  • Hosmer, D. W., S. Taber, and S. Lemeshow: “The importance of assessing the fit of logistic regression models: a case study”, American Journal of Public Health, 81(1991), 1630–1635.

    Article  Google Scholar 

  • Huber, P.: “The behavior of maximum likelihood estimates under non-standard conditions”, University of California Press, 1967.

    Google Scholar 

  • Kashner, T. M., T. J. Carmody, T. Suppes, A. J. Rush, M. L. Crismon, A. L. Miller, M. Toprac, and M. Trivedi: “Catching up on health outcomes: The Texas Medication Algorithm Project”, Health Services Research, 38(2003), 311–331.

    Article  Google Scholar 

  • Kashner, T. M., S. S. Henley, R. M. Golden, J. M. Byrne, S. A. Keitz, G. W. Cannon, B. K. Chang, G. J. Holland, D. C. Aron, E. A. Muchmore, A. Wicker, and H. White: “Studying the Effects of ACGME Duty Hours Limits on Resident Satisfaction: Results From VA Learners’ Perceptions Survey”, Academic Medicine, 85(2010), 1130–1139.

    Google Scholar 

  • Kashner, T. M., S. S. Henley, R. M. Golden, A. J. Rush, and R. B. Jarrett: “Assessing the preventive effects of cognitive therapy following relief of depression: A methodological innovation”, Journal of Affective Disorders, 104(2007), 251–261.

    Article  Google Scholar 

  • Kashner, T. M., R. Rosenheck, A. B. Campinell, A. Suris, and C. W. T. S. Team: “Impact of work therapy on health status among homeless, substance-dependent veterans - A randomized controlled trial”, Archives of General Psychiatry, 59(2002), 938–944.

    Article  Google Scholar 

  • Konishi, S., and G. Kitagawa: “Generalized information criteria in model selection”, Biometrika, 83(1996), 875–890.

    Article  Google Scholar 

  • Kuss, O.: “Global goodness-of-fit tests in logistic regression with sparse data”, Statistics in Medicine, 21(2002), 3789–3801.

    Article  Google Scholar 

  • Lancaster, T.: “The Covariance Matrix of the Information Matrix Test”, Econometrica, 52(1984), 1051–1054.

    Article  Google Scholar 

  • Lehmann, E. L.: “Model specification: The views of Fisher and Neyman, and later developments”, Statistical Science, 5(1990), 160–168.

    Article  Google Scholar 

  • Maddala, G. S.: Limited-dependent and Qualitative Variables in Econometrics. New York: Cambridge, 1999.

    Google Scholar 

  • Magnus, J. R.: “On differentiating eigenvalues and eigenvectors”, Econometric Theory, 1(1985), 179–191.

    Article  Google Scholar 

  • Magnus, J. R., and H. Neudecker: Matrix Differential Calculus with Applications in Statistics and Econometrics. New York: John Wiley & Sons, 1999.

    Google Scholar 

  • McCullagh, P.: “On the asymptotic distribution of Pearson’s statistic in linear exponential family models”, International Statistical Review, 53(1985), 61–67.

    Article  Google Scholar 

  • McCullagh, P., and J. A. Nelder: Generalized linear models. New York: Chapman and Hall, 1989.

    Google Scholar 

  • Orme, C.: “The Calculation of the Information Matrix Test for Binary Data Models”, The Manchester School, 56(1988), 370–376.

    Article  Google Scholar 

  • Orme, C.: “The small-sample performance of the information-matrix test”, Journal of Econometrics, 46(1990), 309–331.

    Article  Google Scholar 

  • Osius, G., and D. Rojek: “Normal goodness-of-fit tests for multinomial models with large degrees-of-freedom”, Journal of the American Statistical Association, 87(1992), 1145–1152.

    Article  Google Scholar 

  • Pepe, M. S.: The Statistical Evaluation of Medical Tests for Classification and Prediction. Oxford: Oxford University Press, 2004.

    Google Scholar 

  • Politis, D. N., J. P. Romano, and M. Wolf: Subsampling. New York: Springer, 1999.

    Book  Google Scholar 

  • Qin, J., and B. Zhang: “A goodness-of-fit test for logistic regression models based on case-control data”, Biometrika, 84(1997), 609–618.

    Article  Google Scholar 

  • Raudenbush, S. W., and A. S. Bryk: Hierarchical Linear Models: Applications and Data Analysis Methods. Thousand Oaks, CA: Sage Publications, Inc., 2002.

    Google Scholar 

  • Sarkar, S. K., and H. Midi: “Importance of assessing the model adequacy of binary logistic regression”, Journal of Applied Sciences, 10(2010), 479–486.

    Article  Google Scholar 

  • Serfling, R. J.: Approximation theorems of mathematical statistics. New York: John Wiley & Sons, 1980.

    Book  Google Scholar 

  • Stomberg, C., and H. White: “Bootstrapping the Information Matrix Test”, University of California, San Diego Department of Economics Discussion Paper, 2000.

    Google Scholar 

  • Stukel, T.A.: “Generalized logistic models”, Journal of the American Statistical Association, 83(1988), 426–431.

    Article  Google Scholar 

  • Takeuchi, K.: “Distribution of information statistics and a criterion of model fitting for adequacy of models”, Mathematical Sciences, 153(1976), 12–18.

    Google Scholar 

  • Taylor, L.W.: “The Size Bias of White’s Information Matrix Test”, Economics Letters, 24(1987), 63–67.

    Article  Google Scholar 

  • Tsay, R.S.: Analysis of Financial Time Series. New York: John Wiley & Sons, 2010.

    Book  Google Scholar 

  • Tsiatis, A.A.: “A Note on a goodness-of-fit test for the logistic regression model”, Biometrika, 67(1980), 250–251.

    Article  Google Scholar 

  • Verbeke, G., and E. Lesaffre: “The effect of misspecifying the random-effects distribution in linear mixed models for longitudinal data”, Computational Statistics and Data Analysis, 23(1997), 541–556.

    Article  Google Scholar 

  • Vuong, Q.H.: “Likelihood ratio tests for model selection and non-nested hypotheses”, Econometrica, 57(1989).

    Google Scholar 

  • Wald, A.: “Tests of Statistical Hypotheses Concerning Several Parameters When the Number of Observations is Large”, Transactions of the American Mathematical Society, 54(1943), 426–482.

    Article  Google Scholar 

  • Wei, B.: Exponential Family Nonlinear Models. New York: Springer, 1998.

    Google Scholar 

  • White, H.: “Using least squares to approximate unknown regression functions”, International Economic Review, 21(1980), 149–170.

    Article  Google Scholar 

  • White, H.: “Consequences and detection of misspecified nonlinear regression models”, Journal of the American Statistical Association, 76(1981), 419–433.

    Article  Google Scholar 

  • White, H.: “Maximum Likelihood Estimation of Misspecified Models”, Econometrica, 50(1982), 1–25.

    Article  Google Scholar 

  • White, H.: “Specification Testing in Dynamic Models”, Cambridge University Press, 1987.

    Google Scholar 

  • White, H.: Estimation, inference, and specification analysis. Cambridge: Cambridge University Press, 1994.

    Google Scholar 

  • Wickens, T.D.: Elementary Signal Detection Theory. New York: Oxford University Press, 2002.

    Google Scholar 

  • Winkler, G.: Image Analysis, Random Fields, and Dynamic Monte Carlo Methods. New York: Springer-Verlag, 1991.

    Google Scholar 

  • Zhang, B.: “A chi-squared goodness-of-fit test for logistic regression models based on case-control data”, Biometrika, 86(1999), 531–539.

    Article  Google Scholar 

  • Zhang, B.: “An information matrix test for logistic regression models based on case-control data”, Biometrika, 88(2001), 921–932.

    Article  Google Scholar 

Download references

Acknowledgments

This research was made possible by grants from the National Cancer Institute (NCI) (R44CA139607, PI: S.S. Henley) and the National Institute on Alcohol Abuse and Alcoholism (NIAAA) (R43AA014302, PI: S.S. Henley; R43/44AA013351, PI: S.S. Henley; R44AA011607, PI: S.S. Henley) under the Small Business Innovation Research (SBIR) program. The authors wish to gratefully acknowledge this support. This chapter reflects the authors’ views and not necessarily the opinions or views of the NCI or the NIAAA. The authors would also like to thank the anonymous referee for helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Golden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Golden, R.M., Henley, S.S., White, H., Kashner, T. (2013). New Directions in Information Matrix Testing: Eigenspectrum Tests. In: Chen, X., Swanson, N. (eds) Recent Advances and Future Directions in Causality, Prediction, and Specification Analysis. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1653-1_6

Download citation

Publish with us

Policies and ethics