Skip to main content

Abstract

Over the past 5 years or so, there has been a tremendous interest in developing microalgae as a novel, renewable source of biodiesel. This subject has captured the public interest, with frequent headlines seeming to suggest that cheap renewable “green” oil is just around the corner, as well as attracting significant interest in the investment world, with well over one billion dollars of venture and big oil capital (Mascarelli 2009) being invested in more than one hundred algal biofuels start-ups (Waltz 2009b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Shanab RAI, Matter IA, Kim S, Oh Y, Choi J, Jeon B (2011) Characterization and identification of lipid-producing microalgae species isolated from a freshwater lake. Biomass and Bioenergy 35(7):3079–3085

    Google Scholar 

  • Andersen RA (2005) Algae culturing techniques. Elsevier, San Diego

    Google Scholar 

  • Bell PR, Hemsley AR (2004) Green plants, their origin and diversity. Cambridge University Press, Cambridge

    Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae – A review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14(2):557–577

    Article  CAS  Google Scholar 

  • Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22(6):1490–1506

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2004) Only six kingdoms of life. Proceedings of the Royal Society B 271:1251–1262

    Google Scholar 

  • Cavalier-Smith T, Chao EE-Y (2006) Phylogeny and Megasystematics of Phagotrophic Heterokonts (Kingdom Chromist). Journal of Molecular Evolution 62:388–420

    Google Scholar 

  • Chena CY, Yeh KL, Aisyaha R, Leec DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102(1):71–81

    Article  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  PubMed  CAS  Google Scholar 

  • Converti A, Casazza AA, Ortiz EY, Perego P, Borghi MD (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process: Process Inten 48(6):1146–1151

    Article  CAS  Google Scholar 

  • Craggs RJ, Heubeck S, Lundquist TJ, Benemann JR (2011) Algal biofuels from wastewater treatment high rate algal ponds. Water Sci Technol 63(4):660–665

    Article  PubMed  CAS  Google Scholar 

  • Cravotto G, Boffa L, Mantegna S, Perego P, Avogadro M, Cintas P (2008) Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Ultrason Sonochem 15(5):898–902

    Article  PubMed  CAS  Google Scholar 

  • Desmorieux H, Decaen N (2006) Convective drying of spirulina in thin layer. J Food Eng 66(4):497–503

    Article  Google Scholar 

  • Ehimen EA, Sun ZF, Carrington CG, Birch EJ, Eaton-Rye JJ (2011) Anaerobic digestion of microalgae residues resulting from the biodiesel production process. Appl Energy 88(10):3454–3463

    Article  CAS  Google Scholar 

  • Gatenby CM, Orcutt DM, Kreeger DA, Parker BC, Jones VA, Neves RJ (2003) Biochemical composition of three algal species proposed as food for captive freshwater mussels. J Appl Phycol 15:1–11

    Article  CAS  Google Scholar 

  • Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131

    Article  PubMed  CAS  Google Scholar 

  • Graham LE, Wilcox LW, Graham J (2009) Algae. Benjamin Cummings, San Francisco

    Google Scholar 

  • Griffiths MJ, Harisson STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  CAS  Google Scholar 

  • Grima EM, Belarbia EH, Fernández FGA, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnology 20(7):491–515

    Google Scholar 

  • Grima EM, Medina A, Giménez A, Pérez JS, Camacho F, Sánchez JG (1994) Comparison between extraction of lipids and fatty acids from microalgal biomass. J Am Oil Chem Soc 71(9):955–959

    Article  Google Scholar 

  • Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36:269–274

    Article  PubMed  CAS  Google Scholar 

  • Hende SVD, Vervaeren H, Desmet S, Boon N (2011) Biofloculation of microalgae and bacteria combined with flue gas to improve sewage treatment. N Biotechnol, doi:10.1016/j.nbt.2011.04.009 (in press)

    Google Scholar 

  • Ho S, Chen W, Chang J (2010) Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production. Bioresour Technol 101(22):8725–8730

    Article  PubMed  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54(4):621–639

    Article  PubMed  CAS  Google Scholar 

  • Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzym Microb Tech 27:631–635

    Article  CAS  Google Scholar 

  • Kröger M, Müller-Langer F (2011) Impact of heterotrophic and mixotrophic growth of microalgae on the production of future biofuels. Biofuels 2(2):145–151

    Article  Google Scholar 

  • Lardon L, Hélias A, Sialve B, Steyer JP, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43(17):6475–6481

    Article  PubMed  CAS  Google Scholar 

  • Leach G, Oliveira G, Morais R (1998) Spray-drying of Dunaliella salina to produce a β-carotene rich powder. J Ind Microbiol Biotechnol 20(2):82–85

    Article  CAS  Google Scholar 

  • Leea JY, Yooa C, Juna SY, Ahna CY, Oh HM (2010) Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol 101(1):S75–S77

    Article  Google Scholar 

  • Lehr F, Posten C (2009) Closed photo-bioreactors as tools for biofuel production. Curr Opin Biotechnol 20(3):280–285

    Article  PubMed  CAS  Google Scholar 

  • Levine RB, Pinnarat T, Savage PE (2010) Biodiesel production from wet algal biomass through in situ lipid hydrolysis and supercritical transesterification. Energy Fuels 24(9):5235–5243

    Article  CAS  Google Scholar 

  • Lin S (2011) Genomic understanding of dinoflagellates. Res Microbiol 162(6):551–569

    Article  PubMed  CAS  Google Scholar 

  • Liu XY, Sheng J, Curtiss R (2011) Fatty acid production in genetically modified cyanobacteria. Proc Natl Acad Sci USA 108(17):6899–6904

    Article  PubMed  CAS  Google Scholar 

  • Mascarelli AL (2009) Gold rush for algae. Nature 461:460–461

    Article  PubMed  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14(1):217–232

    Article  CAS  Google Scholar 

  • Piganeau G, Grimsley N, Moreau H (2011) Genome diversity in the smallest marine photosynthetic eukaryotes. Res Microbiol 162(6):570–577

    Article  PubMed  CAS  Google Scholar 

  • Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102(1):35–42

    Article  PubMed  CAS  Google Scholar 

  • Pate R, Klise G, Wu B (2011) Resource demand implications for US algae biofuels production scale-up. Appl Energy 88(10):3377–3388

    Article  CAS  Google Scholar 

  • Pienkos PT, Darzins A (2009) The promise and challenges of microalgal-derived biofuels. Biofuels Bioprod Bioref 3(4):431–440

    Article  CAS  Google Scholar 

  • Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102(1):17–25

    Article  PubMed  CAS  Google Scholar 

  • Prakash J, Pushparaj B, Carlozzi P, Torzillo G, Montaini E, Materassi R (1997) Microalgae drying by a simple solar device. Int J Solar Energy 18(4):303–311

    Article  Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9(4):486–501

    Article  PubMed  CAS  Google Scholar 

  • Rawat I, Kumar RR, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88(10):3411–3424

    Article  CAS  Google Scholar 

  • Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112

    Article  PubMed  CAS  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler PA (1998) Lookback at the US department of energy’s aquatic species programs: biodiesel from algae. National Renewable Energy Laboratory, CO, USA

    Book  Google Scholar 

  • Shifrin NS, Chisholm SW (1981) Phytoplankton lipids: interspecific differences and effects of nitrate, silicate and light–dark cycles. J Phycol 17:374–384

    Article  CAS  Google Scholar 

  • Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sustain Energy Rev 14(9):2596–2610

    Article  CAS  Google Scholar 

  • Srivastava A, Prasad R (2000) Triglycerides-based diesel fuels. Renewable and Sustainable Energy Reviews 4(2):111–113

    Google Scholar 

  • Sukenik A, Shelef G (1984) Algal autoflocculation-verification and proposed mechanism. Biotechnol Bioeng 26(2):142–147

    Article  PubMed  CAS  Google Scholar 

  • Tredici MR (2010) Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels 1(1):143–162

    Article  CAS  Google Scholar 

  • Uduman N, Qi Y, Danquaha MK, Forde GM, Hoadley A (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sustain Energy 2(1):12701–12715

    Article  Google Scholar 

  • Voosen P (2011) As algae bloom fades, photosynthesis hopes still shine. The New York Times, 29 March 2011

    Google Scholar 

  • Waltz E (2009a) Biotech’s green gold? Nat Biotechnol 27(1):15–18

    Article  PubMed  CAS  Google Scholar 

  • Waltz E (2009b) Algae trailblazer shuts. Nat Biotechnol 27(7):586

    Article  CAS  Google Scholar 

  • Wang ZT, Ullrich N, Joo S, Waffenschmidt S, Goodenough U (2009) Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot Cell 8(12):1856–1868

    Article  PubMed  CAS  Google Scholar 

  • Weissman JC, Benemann JR (1978) Biomass recycling and species control in continuous cultures. Bioeng Biotechnol 21:627–648

    Article  Google Scholar 

  • Weissman JC, Goebel RP, Benemann JR (1988) Photobioreactor design: mixing, carbon utilization, and oxygen accumulation. Biotechnol Bioeng 31(4):336–344

    Article  PubMed  CAS  Google Scholar 

  • Whittaker RH (1959) On the broad classification of organisms. Q Rev Biol 34:210–226

    Article  PubMed  CAS  Google Scholar 

  • Widjaja A, Chien CC, Ju YH (2009) Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J Taiwan Inst Chem Eng 40(1):13–20

    Article  CAS  Google Scholar 

  • Wiley PE, Campbell JE, McKuin B (2011) Production of biodiesel and biogas from algae: a review of process train options. Water Environ Res 83:326–338

    Article  PubMed  CAS  Google Scholar 

  • Woese CR, Gibson J, Fox GE (1980) Do genealogical patterns in purple photosynthetic bacteria reflect interspecific gene transfer? Nature 283(10):212–214

    Article  PubMed  CAS  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87(12):4576–4579

    Article  PubMed  CAS  Google Scholar 

  • Wu Z, Shi X (2007) Optimization for high-density cultivation of heterotrophic Chlorella based on a hybrid neural network model. Lett Appl Microbiol 44:13–18

    Article  PubMed  CAS  Google Scholar 

  • Xiong W, Gao C, Yan D, Wu C, Wu Q (2010) Double CO2 fixation in photosynthesis-fermentation model enhances algal lipid synthesis for biodiesel production. Bioresour Technol 101(7):2287–2293

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Li X, Hu H, Zhang X, Yu Y, Chen Y (2011) Growth and lipid accumulation properties of a freshwater microalga, Chlorella ellipsoidea YJ1, in domestic secondary effluents. Appl Energy 88(10):3295–3299

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick C. Hallenbeck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Leite, G.B., Hallenbeck, P.C. (2012). Algae Oil. In: Hallenbeck, P. (eds) Microbial Technologies in Advanced Biofuels Production. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1208-3_13

Download citation

Publish with us

Policies and ethics