Skip to main content

Localization of the Bacterial RNA Infrastructure

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 722))

Abstract

The bacterial RNA network includes most of the same components found in eukaryotes, and many of the interactions that under lie transcription, RNA processing and stability, translation, and protein secretion are conserved. The major difference is that all of these functions take place in a single cellular compartment. In spite of the absence of membrane-bound organelles, or in some cases because of it, key components of the RNA network are localized to specific subcellular spaces or structures to ensure proper processing and regulation. This chapter focuses on what is known about subcellular localization of the bacterial RNA network and what insights localization provides to regulation of the RNA infrastructure of the cell.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shapiro L, McAdams HH, Losick R. Why and how bacteria localize proteins. Science 2009; 326:1225–1228.

    Article  PubMed  CAS  Google Scholar 

  2. Thanbichler M, Shapiro L. Getting organized—how bacterial cells move proteins and DNA. Nat Rev Microbiol 2008; 6:28–40.

    Article  PubMed  CAS  Google Scholar 

  3. Pogliano J. The bacterial cytoskeleton. Curr Opin Cell Biol 2008; 20:19–27.

    Article  PubMed  CAS  Google Scholar 

  4. Briegel A, Dias DP, Li Z et al. Multiple large filament bundles observed in Caulobacter crescentus by electron cryotomography. Mol Microbiol 2006; 62:5–14.

    Article  PubMed  CAS  Google Scholar 

  5. Lewis PJ, Thaker SD, Errington J. Compartmentalization of transcription and translation in Bacillus subtilis. EMBO J2000; 19:710–718.

    Article  PubMed  CAS  Google Scholar 

  6. Azam TA, Hiraga S, Ishihama A. Two types of localization of the DNA-binding proteins within the Escherichia coli nucleoid. Genes Cells 2000; 5:613–626.

    Article  PubMed  CAS  Google Scholar 

  7. Golding I, Cox EC. RNA dynamics in live Escherichia coli cells. Proc Natl Acad Sci USA 2004; 101:11310–11315.

    Article  PubMed  CAS  Google Scholar 

  8. Llopis PM, Jackson AF, Sliusarenko O et al. Spatial organization of the flow of genetic information in bacteria. Nature 2010; 466:77–81.

    Article  CAS  Google Scholar 

  9. Kruse T, Blagoev B, Lobner-Olesen A et al. Actin homolog MreB and RNA polymerase interact and are both required for chromosome segregation in Escherichia coli. Genes Dev 2006; 20:113–124.

    Article  PubMed  CAS  Google Scholar 

  10. Gitai Z, Shapiro L. Bacterial cell division spirals into control. Proc Natl Acad Sci USA 2003; 100:7423–7424.

    Article  PubMed  CAS  Google Scholar 

  11. Kruse T, Moller-Jensen J, Lobner-Olesen A et al. Dysfunctional MreB inhibits chromosome segregation in Escherichia coli. EMBO J 2003; 22:5283–5292.

    Article  PubMed  CAS  Google Scholar 

  12. Jones LJ, Carballido-Lopez R, Errington J. Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 2001; 104:913–922.

    Article  PubMed  CAS  Google Scholar 

  13. Carpousis AJ. The RNA degradosome of Escherichia coli: an mRNA-degrading machine assembled on RNase E. Annu Rev Microbiol 2007; 61:71–87.

    Article  PubMed  CAS  Google Scholar 

  14. Kennell D. Processing endoribonucleases and mRNA degradation in bacteria. J Bacteriol 2002; 184:4645–4657.

    Article  PubMed  CAS  Google Scholar 

  15. Liou GG, Jane WN, Cohen SN et al. RNA degradosomes exist in vivo in Escherichia coli as multicomponent complexes associated with the cytoplasmic membrane via the N-terminal region of ribonuclease E. Proc Natl Acad Sci USA 2001; 98:63–68.

    Article  PubMed  CAS  Google Scholar 

  16. Taghbalout A, Rothfield L. RNaseE and RNA helicase B play central roles in the cytoskeletal organization of the RNA degradosome. J Biol Chem 2008; 283:13850–13855.

    Article  PubMed  CAS  Google Scholar 

  17. Taghbalout A, Rothfield L. RNaseE and the other constituents of the RNA degradosome are components of the bacterial cytoskeleton. Proc Natl Acad Sci USA 2007; 104:1667–1672.

    Article  PubMed  CAS  Google Scholar 

  18. Khemici V, Poljak L, Luisi BF et al. The RNase E of Escherichia coli is a membrane-binding protein. Mol Microbiol 2008; 70:799–813.

    PubMed  CAS  Google Scholar 

  19. Taghbalout A, Rothfield L. New insights into the cellular organization of the RNA processing and degradation machinery of Escherichia coli. Mol Microbiol 2008; 70:780–782.

    PubMed  CAS  Google Scholar 

  20. Valencia-Burton M, Shah A, Sutin J et al. Spatiotemporal patterns and transcription kinetics of induced RNA in single bacterial cells. Proc Natl Acad Sci USA 2009; 106:16399–16404.

    Article  PubMed  CAS  Google Scholar 

  21. Miczak A, Srivastava RA, Apirion D. Location of the RNA-processing enzymes RNase III, RNase E and RNase P in the Escherichia coli cell. Mol Microbiol 1991; 5:1801–1810.

    Article  PubMed  CAS  Google Scholar 

  22. Jasiecki J, Wegrzyn G. Localization of Escherichia coli poly(A) polymerase I in cellular membrane. Biochem Biophys Res Commun 2005; 329:598–602.

    Article  PubMed  CAS  Google Scholar 

  23. Russell J, Keiler K. Subcellular localization of a bacterial regulatory RNA. Proc Natl Acad Sci USA 2009; 106:16405–16409.

    Article  PubMed  CAS  Google Scholar 

  24. Mascarenhas J, Weber MH, Graumann PL. Specific polar localization of ribosomes in Bacillus subtilis depends on active transcription. EMBO Rep 2001; 2:685–689.

    Article  PubMed  CAS  Google Scholar 

  25. Ortiz JO, Forster F, Kurner J et al. Mapping 70S ribosomes in intact cells by cryoelectron tomography and pattern recognition. J Struct Biol 2006; 156:334–341.

    Article  PubMed  CAS  Google Scholar 

  26. Defeu Soufo HJ, Reimold C et al. Bacterial translation elongation factor EF-Tu interacts and colocalizes with actin-like MreB protein. Proc Natl Acad Sci USA 2010; 107:3163–3168.

    Article  PubMed  Google Scholar 

  27. Gross SR, Kinzy TG. Translation elongation factor 1A is essential for regulation of the actin cytoskeleton and cell morphology. Nat Struct Mol Biol 2005; 12:772–778.

    Article  PubMed  CAS  Google Scholar 

  28. Liu G, Tang J, Edmonds BT et al. F-actin sequesters elongation factor lalpha from interaction with aminoacyl-tRNA in a pH-dependent reaction. J Cell Biol 1996; 135:953–963.

    Article  PubMed  CAS  Google Scholar 

  29. Keiler KC. Biology of trans-Translation. Annu Rev Microbiol 2008; 62:133–151.

    Article  PubMed  CAS  Google Scholar 

  30. Moore SD, Sauer RT. The tmRNA system for translational surveillance and ribosome rescue. Annu Rev Biochem 2007; 76:101–124.

    Article  PubMed  CAS  Google Scholar 

  31. Aiba H. Mechanism of RNA silencing by Hfq-binding small RNAs. Curr Opin Microbiol 2007; 10:134–139.

    Article  PubMed  CAS  Google Scholar 

  32. Diestra E, Cayrol B, Arluison V et al. Cellular electron microscopy imaging reveals the localization of the Hfq protein close to the bacterial membrane. PLoS One 2009; 4:e8301.

    Article  PubMed  Google Scholar 

  33. Vanderpool CK, Gottesman S. Involvement of a novel transcriptional activator and small RNA in post-transcriptional regulation of the glucose phosphoenolpyruvate phosphotransferase system. Mol Microbiol 2004; 54:1076–1089.

    Article  PubMed  CAS  Google Scholar 

  34. Kimata K, Tanaka Y, Inada T et al. Expression of the glucose transporter gene, ptsG, is regulated at the mRNA degradation step in response to glycolytic flux in Escherichia coli. EMBO J 2001; 20:3587–3595.

    Article  PubMed  CAS  Google Scholar 

  35. Kawamoto H, Morita T, Shimizu A et al. Implication of membrane localization of target mRNA in the action of a small RNA: mechanism of post-transcriptional regulation of glucose transporter in Escherichia coli. Genes Dev 2005; 19:328–338.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Keiler, K.C. (2011). Localization of the Bacterial RNA Infrastructure. In: Collins, L.J. (eds) RNA Infrastructure and Networks. Advances in Experimental Medicine and Biology, vol 722. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0332-6_15

Download citation

Publish with us

Policies and ethics