Skip to main content

Combined Device-Circuit Simulation for Advanced Semiconductor Devices

  • Conference paper
Semiconductors

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 59))

  • 375 Accesses

Abstract

To develop and optimize semiconductor devices it is common practice to advocate numerical device modeling by using simulation programs. Typically the simulation of a unit is split into levels, starting with process simulation (to study the effect of wafer-processing steps) and device simulation (to study the electrical behavior), to circuit simulation (to study the electrical features of an ensemble of devices), leading possibly to the logic simulation of a whole unit. Unfortunately, this approach makes it very hard to model the interaction of the device and the circuit in the transient case: therefore, in order to optimize the transient behavior of a particular device it is necessary to include the effects of both the drive circuit (i.e., control part), as well as the load circuit. During the last year, we have developed a software environment for combined device-circuit simulation studies dedicated to semiconductor power devices, magnetic field sensors, and Bicmos structures augmented with simple circuits. In our work we discuss some critical points in detail. These include the grid generation and adaptation, the scaling of the unknowns (i.e., how to deal with high voltages), the numerical procedures used to solve the transient problem (with special attention to supercomputer architectures), the assembly of the device (element assembly versus edge assembly) and circuit equations as well as the physical models used. We show that it is essential to properly chose the numerical techniques to obtain accurate and reliable results. Studies of the turn-off of power devices, the switching of BiCMOS structures, and of magnetic field sensors indicate the success of the current approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. L. Engl, R. Laur, and H. K. Dirks, “MEDUSA – a simulator for modular circuits,” IEEE Trans. on Computer Aided Design of Integrated Circuits and Systems, vol. CAD-1, pp. 85–93, 1982.

    Article  Google Scholar 

  2. M. R. Pinto, C. S. Rafferty, and R. W. Dutton, PISCES II: Poisson and Continuity Equation Solver. Stanford University, Stanford, CA 94305, 1984.

    Google Scholar 

  3. J. G. Rollins and J. Choma, “Mixed-mode PISCES-SPICE coupled circuit and device solver,” IEEE TCAD, vol. 7, Aug 1988.

    Google Scholar 

  4. K. Johansson, “Incorporation of an external circuit in the semiconductor simulation program PISCES,” Master’s thesis, Asea Brown Boveri, Corporate Research Center, 5400 Baden, Switzerland, 1989.

    Google Scholar 

  5. “TMA product announcement: PISCES II-B.” TMA’s Newsletter on Developments in Semiconductor Technology Simulation, vol. 3, no. 4, July-August 1991.

    Google Scholar 

  6. G. Baccarani, M. Rudan, R. Guerrieri, and P. Ciampolini, “Physical models for numerical device simulation,” in Proc. of the Comett-Euroform, (DEIS-University of Bologna, Bologna, Italy), Mar. 1991.

    Google Scholar 

  7. K. Bløtekjær, “Transport equations for electrons in two-valley semiconductors,” IEEE Trans. on Electron Devices, vol. ED-17, no. 1, pp. 38–47, 1970.

    Article  Google Scholar 

  8. G. Wachutka, “Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling,” IEEE Transactions on CAD, vol. 9, no. 11, pp. 1141–49, 1990.

    Google Scholar 

  9. O. Madelung, Introduction to Solid State Theory. New York: Springer-Verlag, 1978.

    Google Scholar 

  10. C. Riccobene, G. Wachutka, and J. F. B. H. Baltes, “2d numerical modeling of dual collector magnetotransistors: Evidence for emitter efficiency modulation,” in Proceedings of the Fifth Conference of EUROSENSORS, 1991 (submitted Jan 25).

    Google Scholar 

  11. P. Conti, G. Heiser, and W. Fichtner, “Three-dimensional transient simulation of complex silicon devices,” Jap. J. of Appl. Phys. Lett., december 1990. An abridged version appeared in Extended Abstracts of the 1990 Int. Conf on Solid State Devices and Materials, pages 143–146, Sendai, Japan, 1990.

    Google Scholar 

  12. P. Conti, N. Hitschfeld, and W. Fichtner, “Ω — an octree-based mixed element grid allocator for adaptive 3d device simulation,” IEEE Trans. on CAD/ICAS, September 1991. in press.

    Google Scholar 

  13. P. Conti, Grid Generation for Three-dimensional Device Simulation. PhD thesis, ETH Zürich, 1991. published by Hartung-Gorre Verlag, Konstanz, Germany.

    Google Scholar 

  14. G. Heiser, C. Pommerell, J. Weis, and W. Fichtner, “Three-dimensional numerical semiconductor device simulation: Algorithms, architectures, results,” IEEE Trans. on CAD/ICAS, Sept. 1991. in press.

    Google Scholar 

  15. G. Heiser, Design and Implementation of a Three Dimensional General Purpose Semiconductor Device Simulator. PhD thesis, ETH-Zürich, 1991. publ. by Hartung Gorre Verlag, Konstanz, Germany.

    Google Scholar 

  16. J. F. Bürgler, “GENSIM: GENeral SIMulation Program for Two-Dimensional Semiconductor Devices,” Tech. Rep. 12, Integrated Systems Laboratory ETHZ, Switzerland, 1991.

    Google Scholar 

  17. A. D. Mari, “An Accurate numerical steady-state one-dimensional solution of the p-n Junction,” Solid-State Electronics, vol. 11, pp. 33–58, 1968.

    Article  Google Scholar 

  18. A. D. Mari, “An Accurate numerical one-dimensional solution of the p-n Junction under arbitrary transient conditions,” Solid-State Electronics, vol. 11, pp. 1021–1053, 1968.

    Article  Google Scholar 

  19. J. F. Bürgler, R. E. Bank, W. Fichtner, and R. K. Smith, “A New Discretization Scheme for the Semiconductor Current Continuity Equations,” IEEE Trans. CAD, vol. 8, no. 5, pp. 479–89, 1989.

    Google Scholar 

  20. J. F. Bürgler, Discretization and Grid Adaptation in Semiconductor Device Modeling. PhD thesis, Swiss Federal Institute of Technology, Zürich, 1990.

    Google Scholar 

  21. R. S. Varga, Matrix Iterative Analysis. Englewood Cliffs: Prentice-Hall, 1962.

    Google Scholar 

  22. E. M. Buturla, P. E. Cottrell, B. M. Grossman, and K. A. Salsburg, “Finite-Element Analysis of Semiconductor Devices: The FIELDAY Program,” IBM J. Res. Develop., vol. 25, no. 4, pp. 218–231, 1981.

    Article  Google Scholar 

  23. R. E. Bank, D. J. Rose, and W. Fichtner, “Numerical Methods for Semiconductor Device Simulation,” IEEE Trans. Electr. Dev., vol. ED-30, pp. 1031–1041, 1983.

    Article  Google Scholar 

  24. D. L. Scharfetter and H. K. Gummel, “Large-Signal Analysis of a Silicon Read Diode Oscillator,” IEEE Transactions on Electron Devices, vol. ED-16, pp. 64–77, 1969.

    Article  Google Scholar 

  25. S. Mueller, K. Kells, and W. Fichtner, “Automatic Rectangle-based Adaptive Mesh Generation without Obtuse Angles,” special issue of IEEE Trans. CAD, Proceedings NUPAD III, vol. submitted, 1990.

    Google Scholar 

  26. G. Voronoi, “Nouvelle application des paramètres continus a la théorie des formes quadratiques,” J. reine angew. Mathematik, vol. 134, pp. 198–287, 1908.

    Article  MATH  Google Scholar 

  27. U. Ascher, P. A. Markowich, C. Schmeiser, H. Steinrück, and R. Weiss, “Conditioning of the Steady State Semiconductor Device Problem,” SIAM J. Appl. Math., vol. 49, no. 1, pp. 165–185, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Nathan, Carrier Transport in Magnetotransistors. PhD thesis, University of Alberta, Edmonton, Alberta, 1988.

    Google Scholar 

  29. J. Vlach and K. Shinghal, Computer Methods for Circuit Analysis and Design. New York: Van Nostrand Reinhold Company, 1983.

    Google Scholar 

  30. J. K. White and A. Sangiovanni-Vincentelli, Relaxation Techniques for the Simulation of VLSI Circuits. Boston: Kluwer Academic Publishers, 1987.

    Google Scholar 

  31. E. Griepentrog, “The index of differential-algebraic equations and its significance for the circuit simulation,” in Mathematical Modelling and Simulation of Electrical Circuits and Semiconductor Devices (R. E. Bank, R. Bulirsch, and K. Merten, eds.), pp. 11–25, Birkhäuser Verlag, 1990.

    Google Scholar 

  32. W. M. Coughran, Jr., E. Grosse, and D. J. Rose, “CAzM: A Circuit Analyzer with Macro-modeling,” IEEE Transactions on Electron Devices, vol. ED-30, pp. 1207–1213, 1983.

    Article  Google Scholar 

  33. R. E. Bank and D. J. Rose, “Global Approximate Newton Methods,” Numer. Math., vol. 37, pp. 279–295, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  34. R. E. Bank, W. M. Coughran, Jr., W. Fichtner, E. H. Grosse, D. J. Rose, and R. K. Smith, “Transient Simulation of Silicon Devices and Circuits,” IEEE Trans. CAD, vol. CAD-4, pp. 436–451, 1985.

    Google Scholar 

  35. G. Dahlquist and A. Björck, Numerical Methods. Series in automatic computation, Englewood Cliffs, New Jersey: Prentice-Hall, 1974.

    Google Scholar 

  36. J. D. Lambert, Computational Methods in Ordinary Differential Equations. London, New York: John Wiley & Sons, 1973.

    MATH  Google Scholar 

  37. P. Deuflhard, “Global inexact newton methods for very large scale nonlinear problems,” Tech. Rep. SC 90-2, Konrad-Zuse-Zentrum für Informationstechnik, Berlin, Feb. 1990.

    Google Scholar 

  38. R. E. Bank, PLTMG: A Software Package for Solving Elliptic Partial Differential Equations Users’ Guide 6.0. Society for Industrial and Applied Mathematics, 1990.

    MATH  Google Scholar 

  39. G. Ng and B. W. Peyton, “A supernodal cholesky factorization algorithm for shared-memory multiprocessors,” tech. rep., Oak Ridge National Laboratory, Apr. 1991.

    Google Scholar 

  40. C. Pommerell and W. Fichtner, “PILS: An iterative linear solver package for ill-conditioned systems,” in Supercomputing’91, (Albuquerque, NM), ACM-IEEE, Nov. 1991.

    Google Scholar 

  41. H. A. van der Vorst, “Bi-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput., vol. 13, 1992. In press.

    Google Scholar 

  42. F. Bauer, E. Halder, K. Hofmann, H. Haddon, P. Roggwiller, T. Stockmeier, J. Bürgler, W. Fichtner, S. Müller, M. Westermann, J.-M. Moret, and R. Vuilleumier, “Design aspects of M OS-controlled thyristor elements: Technology, simulation and experimential results,” IEEE Trans. on Electron Devices, vol. 38, pp. 1605–1611, July 1991.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Bürgler, J.F., Dettmer, H., Riccobene, C., Coughran, W.M., Fichtner, W. (1994). Combined Device-Circuit Simulation for Advanced Semiconductor Devices. In: Coughran, W.M., Cole, J., Lloyd, P., White, J.K. (eds) Semiconductors. The IMA Volumes in Mathematics and its Applications, vol 59. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8410-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8410-6_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8412-0

  • Online ISBN: 978-1-4613-8410-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics