[1]
A. Agrawal and P. Klein. Cutting down on fill using nested dissection: Provably good elimination orderings. In Sparse Matrix Computations: Graph Theory Issues and Algorithms, IMA Volumes in Mathematics and its Applications, (this book), A. George, J. Gilbert and J. Liu, Springer-Verlag, New York. 1992.
[2]
N. Alon, P. Seymour, and R. Thomas. A separator theorem for non-planar graphs. In Proceedings of the 22th Annual ACM Symposium on Theory of Computing,Maryland, May 1990. ACM.
[3]
E. M. Andreev. On convex polyhedra in Lohacevskii space.
Math. USR Sbornik, 10 (3): 413–440, 1970.
MATHCrossRef[4]
E. M. Andreev. On convex polyhedra of finite volume in Lobacevskii space. Math. USR Sbornik, 12 (2): 270–259, 1970.
[5]
M. J. Berger and S. Bokhari. A partitioning strategy for nonuniform problems on multiprocessors. IEEE Trans. Comp., C-36: 570–580, 1987.
[6]
M. Bern, D. Eppstein and J. R. Gilbert. Provably good mesh generation. In 31st Annual Symposium on Foundations of Computer Science, IEEE,231–241, 1990, (to appear JCSS).
[7]
M. Bern and D. Eppstein. Mesh generation and optimal triangulation. In Computing in Euclidean Geometry, F. K. Hwang and D.-Z. Du editors, World Scientific, 1992.
[8]
G. Birkhoff and A. George. Elimination by nested dissection. Complexity of Sequential and Parallel Numerical Algorithms, J. F. Traub, Academic Press, 1973.
[9]
P. E. Bjßrstad and O. B. Widlund. Iterative methods for the solution of elliptic problems on regions partitioned into substructures.
SIAM J. Numer. Anal., 23: 1097–1120, 1986.
CrossRefMathSciNet[10]
G. E. Blelloch. Vector Models for Data-Parallel Computing. MIT-Press, Cambridge MA, 1990.
[11]
J. H. Bramble, J. E. Pasciak, and A. H. Schatz. An iterative method for elliptic problems on regions partitioned into substructures,
Math. Comp. 46: 361–9, 1986.
MATHCrossRefMathSciNet[12]
D. Calahan. Parallel solution of sparse simultaneous linear equations. in Proceedings of the 11th Annual Allerton Conference on Circuits and Systems Theory, 729–735, 1973.
[13]
T. F. Chan and D. C. Resasco. A framework for the analysis and construction of domain decomposition preconditioners. UCLA-CAM-87-09, 1987.
[14]
L. P. Chew. Guaranteed quality triangular meshes, Department of Computer Science, Cornell University TR 89–893, 1989.
[15]
K. Clarkson. Fast algorithm for the all-nearest-neighbors problem. In
the 24th Annual Symposium on Foundations of Computer Science, 226–232, 1983.
CrossRef[16]
R. Cole, M. Sharir and C. K. Yap. On k-hulls and related problems. SIAM J. Computing, 61, 1987.
[17]
J. H. Conway, and N. J. A. Sloane. Sphere Packings, Lattices and Groups. Springer-Verlag, 1988.
[18]
L. Danzer, J. Fonlupt and V. Klee. Helly’s theorem and its relatives. Proceedings of Symposia in Pure Mathematics, American Mathematical Society, 7: 101–180, 1963.
[19]
H. N. Djidjev. On the problem of partitioning planar graphs.
SIAM J. Alg. Disc. Math., 3 (2): 229–240, June 1982.
MATHCrossRefMathSciNet[20]
A. L. Dulmage and N. S. Mendelsohn. Coverings of bipartite graphs.
Canadian J. Math. 10, pp 517–534, 1958.
MATHCrossRefMathSciNet[21]
I. S. Duff. Parallel implementation of multifrontal schemes.
Parallel Computing, 3, 193–204, 1986.
MATHCrossRefMathSciNet[22]
M. E. Dyer. On a multidimensional search procedure and its application to the Euclidean one-centre problem.
SIAM Journal on Computing 13, pp 31–45, 1984.
MATHCrossRefMathSciNet[23]
D. Eppstein, G. L. Miller, C. Sturtivant and S.-H. Teng. Approximating center points with and without linear programming. Manuscript, Massachusetts Institute of Technology, 1992.
[24]
D. Eppstein, G. L. Miller and S.-H. Teng. A deterministic linear time algorithm for geometric separators and its applications. Manuscript, Xerox Palo Alto Research Center, 1991.
[25]
I. Fkry. On straight line representing of planar graphs. Acta. Sci. Math. 24: 229–233, 1948.
[26]
R. W. Floyd and R. L. Rivest. Expected time bounds for selection.
CACM 18 (3): 165–173, March, 1975.
MATH[27]
H. de Fraysseix, J. Pach, and R. Pollack. Small sets supporting Fâry embeddings of planar graphs. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing, 426–433, 1988.
[28]
G. N. Fredrickson and R. Janardan. Separator-based strategies for efficient message routing. In 27st Annual Symposium on Foundation of Computation Science, IEEE, 428–237, 1986.
[29]
I. Fried. Condition of finite element matrices generated from nonuniform meshes.
AIAA J. 10, pp 219–221, 1972.
MATHCrossRef[30]
A. M. Frieze, G. L. Miller and S.-H. Teng. Separator based divide and conquer in computational geometry. Proceedings of the 1992 ACM Symposium on Parallel Algorithms and Architectures, 1992.
[31]
H. Gazit. An improved algorithm for separating a planar graph. Manuscript, Department of Computer Science, University of Southern California, 1986.
[32]
H. Gazit and G. L. Miller. A parallel algorithm for finding a separator in planar graphs. In 28st Annual Symposium on Foundation of Computation Science, IEEE, 238–248, Los Angeles, October 1987.
[33]
H. Gazit. A deterministic parallel algorithm for planar graph isomorphism. In 32nd Annual Symposium on Foundations of Computer Science, IEEE, to appear, 1991.
[34]
J. A. George. Nested dissection of a regular finite element mesh.
SIAM J. Numerical Analysis, 10: 345–363, 1973.
MATHCrossRef[35]
A. George, M. T. Heath, J. Liu, E. Ng. Sparse Cholesky factorization on a local-memory multiprocessor.
SIAM J. on Scientific and Statistical Computing, 9, 327–340, 1988.
MATHCrossRefMathSciNet[36]
J. A. George and J. W. H. Liu. An automatic nested dissection algorithm for irregular finite element problems.
SIAM J. on Numerical Analysis, 15, 1053–1069, 1978.
MATHCrossRefMathSciNet[37]
J. A. George and J. W. H. Liu. Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall, 1981.
[38]
J. R. Gilbert, J. P. Hutchinson, and R. E. Tarjan. A separator theorem for graphs of bounded genus.
J. Algorithms, 5 pp 391–407, 1984.
MATHCrossRefMathSciNet[39]
J.R. Gilbert, G.L. Miller, and S.-H. Teng. Geometric mesh partitioning: Implementation and experiments. Technical Report, Xerox Palo Alto Research Center, to appear, 1992.
[40]
J. R. Gilbert and R. E. Tarjan. The analysis of a nested dissection algorithm.
Numerische Mathematik, 50 (4): 377–404, 1987.
MATHCrossRefMathSciNet[41]
G. Hardy, J. E. Littlewood and G. Pólya.
Inequalities. Second edition, Cambridge University Press, 1952.
MATH[42]
D. Haussier and E. Welzl. e-net and simplex range queries.
Discrete e..4 Computational Geometry, 2: 127–151, 1987.
CrossRef[43]
J. P. Hutchinson and G. L. Miller. On deleting vertices to make a graph of positive genus planar. In Discrete Algorithms and Complexity Theory - Proceedings of the Japan-US Joint Seminar, Kyoto,Japan, pages 81–98, Boston, 1986. Academic Press.
[44]
C. Jordan. Sur les assemblages de lignes.
Journal Reine Angew. Math, 70: 185–190, 1869.
CrossRef[45]
F. T. Leighton. Complexity Issues in VLSI. Foundations of Computing. MIT Press, Cambridge, MA, 1983.
[46]
F. T. Leighton and S. Rao. An approximate max-flow min-cut theorem for uniform multi-commodity flow problems with applications to approximation algorithms. In 29th Annual Symposium on Foundations of Computer Science, pp 422–431, 1988.
[47]
C. E. Leiserson. Area Efficient VLSI Computation. Foundations of Computing. MIT Press, Cambridge, MA, 1983.
[48]
C. E. Leiserson and J. G. Lewis. Orderings for parallel sparse symmetric factorization. in 3rd SIAM Conference on Parallel Processing for Scientific Computing, 1987.
[49]
R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested dissection.
SIAM J. on Numerical Analysis, 16: 346–358, 1979.
MATHCrossRefMathSciNet[50]
R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs.
SIAM J. of Appl. Math., 36: 177–189, April 1979.
MATHCrossRefMathSciNet[51]
R. J. Lipton and R. E. Tarjan. Applications of planar separator theorem.
SIAM J. Comput, 9 (3): 615–627, August 1981.
CrossRefMathSciNet[52]
J. W. II. Liu. The solution of mesh equations on a parallel computer. in 2nd Langley Conference on Scientific Computing, 1974.
[53]
N. Megiddo. Linear programming in linear time when the dimension is fixed.
SIAM Journal on Computing 12, pp 759–776, 1983.
MATHCrossRefMathSciNet[54]
G. L. Miller. Finding small simple cycle separators for 2-connected planar graphs.
Journal of Computer and System Sciences, 32 (3): 265–279, June 1986.
MATHCrossRefMathSciNet[55]
G. L. Miller and S.-H. Teng. Centerpoints and point divisions. Manuscript, School of Computer Science, Carnegie Mellon University, 1990.
[56]
G. L. Miller, S.-H. Teng, and S. A. Vavasis. A unified geometric approach to graph separators. In 32nd Annual Symposium on Foundations of Computer Science, IEEE, pp 538–547, 1991.
[57]
G. L. Miller, S.-H. Teng, W. Thurston and S. A. Vavasis. Separators for sphere-packings and nearest neighborhood graphs. in progress 1992.
[58]
G. L. Miller, S.-H. Teng, W. Thurston and S. A. Vavasis. Finite element meshes and geometric separators. in progress 1992.
[59]
G. L Miller and W. Thurston. Separators in two and three dimensions. In Proceedings of the 22M Annual ACM Symposium on Theory of Computing,pages 300–309, Maryland, May 1990. ACM.
[60]
G. L. Miller and S. A. Vavasis. Density graphs and separators. In Second Annual ACM-SIAM Symposium on Discrete Algorithms,pages 331–336, San Francisco, January 1991. ACM-SIAM.
[61]
S. A. Mitchell and S. A. Vavasis. Quality mesh generation in three dimensions. Proc. ACM Symposium on Computational Geometry, pp 212–221, 1992.
[62]
M. S. Paterson. Tape bounds for time-bounded Turing machines. J. Comp. Syst. Sci., 6: 116124, 1972.
[63]
V. Pan and J. Reif. Efficient parallel solution of linear systems. In Proceedings of the 17th Annual ACM Symposium on Theory of Computing,pages 143–152, Providence, RI, May 1985. ACM.
[64]
A. Pothen and C.-J. Fan. Computing the block triangular form of a sparse matrix.
ACM Transactions on Mathematical Software 16 (4), pp 303–324, 1990.
MATHCrossRefMathSciNet[65]
A. Pothen, H. D. Simon, K.-P. Liou. Partitioning sparse matrices with eigenvectors of graphs.
SIAM J. Matrix Anal. Appl. 11 (3), pp 430–452, July, 1990.
MATHMathSciNet[66]
J. H. Reif and S. Sen. Polling: A new randomized sampling technique for computational geometry. In Proceedings of the 21st annual ACM Symposium on Theory of Computing. 394–404, 1989.
[67]
E. Schwabe, G. Bielloch, A. Feldmann, O. Ghattas, J. Gilbert, G. Miller, D. O’Hallaron, J. Schewchuk and S.-H. Teng. A separator-based framework for automated partitioning and mapping of parallel algorithms in scientific computing. In First Annual Dartmouth Summer Institute on Issues and Obstacles in the Practical Implementation of Parallel Algorithms and the use of Parallel Machines, 1992.
[68]
H. D. Simon. Partitioning of unstructured problems for parallel processing. Computing Systems in Engineering 2:(2/3), pp135–148.
[69]
G. Strang and G. J. Fix. An Analysis of the Finite Element Method, Prentice-Hall, 1973.
[70]
S.-H. Teng. Points, Spheres, and Separators: A Unified Geometric Approach to Graph Partitioning. PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, 1991. CMU-CS-91–184.
[71]
C. Thomassen. Planarity and duality of finite and infinite graphs.
Journal of Combinatorial Theory, Series B, 29: 244–271, 1980.
MATHMathSciNet[72]
J. F. Thompson, Z. U. A. Warsi and C. W. Mastin.
Numerical Grid Generation: Foundations and Applications. New York, North Holland, 1985.
MATH[73]
W. P. Thurston. The geometry and topology of 3-manifolds. Princeton University Notes, 1988.
[74]
W. T. Tutte. Convex representations of graphs.
Proc. London Math. Soc. 10 (3): 304–320, 1960.
MATHCrossRefMathSciNet[75]
W. T. Tutte. How to draw a graph.
Proc. London Math. Soc. 13 (3): 743–768, 1963.
MATHCrossRefMathSciNet[76]
J. D. Ullman.
Computational Aspects of VLSI. Computer Science Press, Rockville MD, 1984.
MATH[77]
P. Ungar. A theorem on planar graphs.
Journal London Math Soc. 26: 256–262, 1951.
MATHCrossRefMathSciNet[78]
P. M. Vaidya. Constructing provably good cheap preconditioners for certain symmetric positive definite matrices. IMA Workshop on Sparse Matrix Computation: Graph Theory Issues and Algorithms, Minneapolis, Minnesota, October 1991.
[79]
L. G. Valiant. Universality consideration in VLSI circuits.
IEEE Transaction on Computers, 30 (2): 135–140, February, 1981.
MATHMathSciNet[80]
V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities.
Theory Probab. Appl., 16: 264–280, 1971.
MATHCrossRef[81]
S. A. Vavasis. Automatic domain partitioning in three dimensions.
SIAM J. Sci. Stat. Comp., 12 (1991) 950–970.
MATHCrossRefMathSciNet[82]
R. D. Williams. Performance of dynamic load balancing algorithms for unstructured mesh calculations. Technical Report, California Institute of Technology, 1990.
[83]
F.-F. Yao. A 3-space partition and its application. In Proceedings of the 15th Annual ACM Symposium on Theory of Computing, ACM, 258–263, 1983.
[84]
E. E. Zmijewski. Sparse Cholesky Factorization on a Multiprocessor. PhD thesis, Department of Computer Science, Cornell University, 1987.