Skip to main content

Current Concepts in the Use of Introduced Bacteria for Biological Disease Control: Mechanisms and Antifungal Metabolites

  • Chapter

Part of the book series: Plant-Microbe Interactions ((PMI,volume 1))

Abstract

The resurgence of interest in the use of introduced microorganisms for biological control of plant pathogens during the past 10 years has been driven in part by trends in agriculture toward greater sustainability and increased public concern for hazards associated with the use of synthetic pesticides. Rapidly evolving technologies from molecular biology and genetics have provided new insights into the underlying mechanisms by which biocontrol agents function and have allowed evaluation of the behavior of microbial inoculants in natural environments to a degree not previously possible. The results from these advances bear directly on two fundamental sources of inconsistency in the performance of microorganisms introduced for biological control that until now have retarded their commercial development and widespread use, namely, inadequate colonization of the target site and variability in the expression or level of activity of the mechanism(s) responsible for pathogen suppression.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, R. R. and P. E. Dunn, eds. 1990. New Directions in Biological Control: Alternatives for Suppressing Agricultural Pests and Diseases . Alan R. Liss, New York.

    Google Scholar 

  2. Cook, R. J. and K. F. Baker. 1983. The Nature and Practice of Biological Control. American Phytopathological Society, St. Paul, MN.

    Google Scholar 

  3. Hornby, D., ed. 1990. Biological Control of Soil-borne Plant Pathogens. CAB International, Oxon, UK.

    Google Scholar 

  4. Keel, C, B. Koller, and G. Défago, eds. 1991. Plant Growth-Promoting Rhizobacteria—Progress and Prospects. IOBC/WPRS Bull. 14(8): 1–418.

    Google Scholar 

  5. Lumsden, R. D. and J. L. Vaughn, eds. 1993. Pest Management: Biologically Based Strategies. American Chemical Society, Washington, DC.

    Google Scholar 

  6. Hokkanen, H. M. T., and J. M. Lynch, eds. Benefits and Risks of Introducing Biocontrol Agents. Plant and Microbial Biotechnology Series, Cambridge University Press, Cambridge, UK. (In Press)

    Google Scholar 

  7. ÒGara, F., D. N. Dowling, and B. Boesten. 1994. Molecular Ecology of Rhizosphere Microorganisms: Biotechnology and the Release of GMOs. VCH Verlagsgesellschaft mbH, Weinheim.

    Google Scholar 

  8. Ryder, M. H., P. M. Stephens, and G. D. Bowen, eds. 1994. Improving Plant Productivity with Rhizobacteria. CSIRO Division of Soils, Adelaide, Australia.

    Google Scholar 

  9. Tjamos, E. C., G. C. Papavizas, and R. J. Cook, eds. 1992. Biological Control of Plant Diseases: Progress and Challenges for the Future. Plenum, New York.

    Google Scholar 

  10. Windeis, C. E. and S. E. Lindow, eds. 1985. Biological Control on the Phylloplane. American Phytopathological Society, St. Paul, MN.

    Google Scholar 

  11. Adams, P. B. 1990. The potential of mycoparasites for biological control of plant diseases. Annu. Rev. Phytopathol. 28:59–72.

    PubMed  CAS  Google Scholar 

  12. Andrews, J. H. 1992. Biological control in the phyllosphere. Annu. Rev. Phytopathol. 30:603–635.

    PubMed  CAS  Google Scholar 

  13. Baker, K. F. 1987. Evolving concepts of biological control of plant pathogens. Annu. Rev. Phytopathol. 26:67–85.

    Google Scholar 

  14. Cook, R. J. 1994. Making greater use of introduced microorganisms for biological control of plant pathogens. Annu. Rev. Phytopathol. 31:53–80.

    Google Scholar 

  15. Davison, J. 1988. Plant beneficial bacteria. Biol technology 6:282–286.

    CAS  Google Scholar 

  16. Défago, G. and D. Haas. 1990. Pseudomonads as antagonists of soilborne plant pathogens: modes of action and genetic analysis. In Soil Biochemistry, vol. 6, eds. J.-M. Bollag and G. Stotzky, pp. 249–291. Marcel Dekker, New York.

    Google Scholar 

  17. Dowling, D. N. and F. ÒGara. 1994. Metabolites of Pseudomonas involved in the biocontrol of plant disease. Tibtech 12:133–141.

    CAS  Google Scholar 

  18. Fravel, D. R. 1988. Role of antibiosis in the biocontrol of plant diseases. Annu. Rev. Phytopathol. 26:75–91.

    CAS  Google Scholar 

  19. Gutterson, N. 1990. Microbial fungicides: recent approaches to elucidating mechanisms. Crit. Rev. Biotechnol. 10:69–91

    Google Scholar 

  20. Handelsman, J. and J. L. Parke. 1989. Mechanisms in biocontrol of soilborne plant pathogens. In Plant-Microbe Interactions, vol. III, eds. T. Kosuge and E. W. Nester, pp. 27–61. McGraw-Hill, New York.

    Google Scholar 

  21. Lam, S. T. and T. D. Gaffney. 1993. Biological activities of bacteria used in plant pathogen control. In Biotechnology in Plant Disease Control, ed. I. Chet, pp. 291–320. John Wiley, New York.

    Google Scholar 

  22. Loper, J. E. and J. S. Buyer. 1991. Siderophores in microbial interactions on plant surfaces. Mol. Plant-Microbe Interact. 4:5–13.

    CAS  Google Scholar 

  23. Lugtenberg, B. J. J., L. A. de Weger, and J. W. Bennett. 1991. Microbial stimulation of plant growth and protection from disease. Curr. Opin. Biotechnol. 2:457–464.

    CAS  Google Scholar 

  24. OSullivan, D. J. and F. ÒGara. 1992. Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol. Rev. 56:662–676.

    CAS  Google Scholar 

  25. Schippers, B., A. W. Bakker, and P. A. H. M. Bakker. 1987. Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu. Rev. Phytopathol. 25:339–358.

    Google Scholar 

  26. Sikora, R. A. 1992. Management of the antagonistic potential in agricultural ecosystems for the biological control of plant parasitic nematodes. Annu. Rev. Phytopathol. 30:245–270.

    Google Scholar 

  27. Sutton, J. C. and G. Peng. 1993. Manipulation and vectoring of biocontrol organisms to manage foliar and fruit diseases in cropping systems. Annu. Rev. Phytopathol 31:473–493.

    Google Scholar 

  28. Taylor, A. G. and G. E. Harman. 1990. Concepts and technologies of selected seed treatments. Annu. Rev. Phytopathol. 28:321–339.

    Google Scholar 

  29. Voisard, C, C. T. Bull, C. Keel, J. Laville, M. Maurhofer, U. Schnider, G. Défago, and D. Haas. 1994. Biocontrol of root diseases by Pseudomonas fluoresces CHA0: current concepts and experimental approaches. In Molecular Ecology of Rhizosphere Microorganisms: Biotechnology and the Release of GMOs, eds. F. ÒGara, D. N. Dowling, and B. Boesten, pp. 67–89. VCH Verlagsgesellschaft mbH, Weinheim.

    Google Scholar 

  30. Weller, D. M. 1988. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu. Rev. Phytopathol. 26:379–407.

    Google Scholar 

  31. Weiler, D. M. and L. S. Thomashow. 1990. Antibiotics: evidence for their production and sites where they are produced. In New Directions in Biological Control: Alternatives for Suppression of Agricultural Pests and Diseases, eds. R. R. Baker and P. E. Dunn, pp. 703–711. Alan R. Liss, New York.

    Google Scholar 

  32. Weiler, D. M. and L. S. Thomashow. 1993. Microbial metabolites with biological activity against plant pathogens. In Pest Management: Biologically Based Strategies, eds. R. D. Lumsden and J. L. Vaughn, pp. 172–180. American Chemical Society, Washington, DC.

    Google Scholar 

  33. Weiler, D. M. and L. S. Thomashow. 1993. Use of rhizobacteria for biocontrol. Curr. Opin. Biotechnol. 4:306–311.

    Google Scholar 

  34. National Academy of Sciences. 1987. Report of the Research Briefing Panel on Biological Control in Managed Ecosystems. National Academy Press, Washington, DC.

    Google Scholar 

  35. Suslow, T. V. 1982. Role of root-colonizing bacteria in plant growth. In Phytopathogenic Prokaryotes, vol. 1, eds. M. S. Mount and G. H. Lacy, pp. 187–223. Academic Press, New York.

    Google Scholar 

  36. Baker, R. 1968. Mechanisms of biological control of soil-borne pathogens. Annu. Rev. Phytopathol. 6:263–294.

    Google Scholar 

  37. Alström, S. 1991. Induction of disease resistance in common bean susceptible to halo blight bacterial pathogen after seed bacterization with rhizosphere pseudomonads. J. Gen. Appl Microbiol. 37:495–501.

    Google Scholar 

  38. Van Peer, R., G. J. Niemann, and B. Schippers. 1991. Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81:728–734.

    Google Scholar 

  39. Wei, G., J. W. Kloepper, and S. Tuzun. 1991. Induction of systemic resistance of cucumber to Colletotrichum obiculare by selected strains of plant growth-promoting rhizobacteria. Phytopathology 81:1508–1512.

    Google Scholar 

  40. Paulitz, T. C. 1991. Effect of Pseudomonas putida on the stimulation of Pythium ultimum by seed volatiles of pea and soybean. Phytopathology 81:1282–1287.

    CAS  Google Scholar 

  41. Nelson, E. B. and A. P. Maloney. 1992. Molecular approaches for understanding biological control mechanisms in bacteria: studies of the interaction of Enterobacter cloacae with Pythium ultimum. Can. J. Plant Pathol. 14:106–114.

    CAS  Google Scholar 

  42. Bull, C. T., D. M. Weller, and L. S. Thomashow. 1991. Relationship between root colonization and suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2–79. Phytopathology 81:954–959.

    Google Scholar 

  43. Howie, W. J. and T. V. Suslow. 1991. Role of antibiotic synthesis in the inhibition of Pythium ultimum in the cotton spermosphere and rhizosphere by Pseudomonas fluorescens. Mol. Plant-Microbe Interact. 4:393–399.

    CAS  Google Scholar 

  44. Wilson, M. and S. E. Lindow. 1994. Inoculum density-dependent mortality and colonization of the phyllophere by Pseudomonas syringae. Appl. Environ. Microbiol. 60:2232–2237.

    PubMed  CAS  Google Scholar 

  45. Fukui, R., M. N. Schroth, M. Hendson, J. G. Hancock, and M. K. Firestone. 1994. Growth patterns and metabolic activity of pseudomonads on sugar beet spermospheres: relationship to pericarp colonization by Pythium ultimum. Phytopathology 84:1331–1337.

    Google Scholar 

  46. Lindow, S. E. 1983. The role of bacterial ice nucleation in frost injury to plants. Annu. Rev. Phytopathol. 21:363–384.

    Google Scholar 

  47. Lindow, S. E. 1983. Methods of preventing frost injury caused by epiphytic ice-nucleation-active bacteria. Plant Disease 67:327–333.

    Google Scholar 

  48. Lindow, S. E., D. C. Amy, and C. D. Upper. 1983. Biological control of frost injury: an isolate of Erwinia herbicola antagonistic to ice nucleation active bacteria. Phytopathology 73:1097–1102.

    Google Scholar 

  49. Lindow, S. E. 1985. Construction of isogenic Ice- strains of Pseudomonas syringae for evaluation of specificity of competition on leaf surfaces. In Microbial Ecology, eds. F. Megusar and M. Gantar, pp. 509–515. Slovene Society for Microbiology, Ljubljana, Yugoslavia.

    Google Scholar 

  50. Lindow, S. E. 1987. Competitive exclusion of epiphytic bacteria by Ice- Pseudomonas syringae mutants. Appl. Environ. Microbiol. 53:2520–2527.

    PubMed  CAS  Google Scholar 

  51. Kinkel, L. L. and S. E. Lindow. 1993. Invasion and exclusion among coexisting Pseudomonas syringae strains on leaves. Appl. Environ. Microbiol. 59:3447–3454.

    PubMed  CAS  Google Scholar 

  52. Wilson, M. and S. E. Lindow. 1994. Ecological similarity and coexistence of epiphytic ice-nucleating (Ice+) Pseudomonas syringae strains and a non-ice-nucleating (Ice-) biological control agent. Appl. Environ. Microbiol. 60:3128–3137.

    PubMed  CAS  Google Scholar 

  53. Loper, J. E. 1988. Role of fluorescent siderophore production in biological control of Pythium ultimum by a Pseudomonas fluorescens strain. Phytopathology 78:166–172.

    CAS  Google Scholar 

  54. Lemanceau, P., P. A. H. M. Bakker, W. J. de Kogel, C. Alabouvette, and B. Schippers. 1992. Effect of pseudobactin 358 production by Pseudomonas putida WCS358 on suppression of fusarium wilt of carnations by nonpathogenic Fusarium oxysporum Fo47. Appl. Environ. Microbiol. 58:2978–2982.

    PubMed  CAS  Google Scholar 

  55. Lemanceau, P., P. A. H. M. Bakker, W. J. de Kogel, C. Alabouvette, and B. Schippers. 1993. Antagonistic effect of nonpathogenic Fusarium oxysporum Fo47 and pseudobactin 358 upon pathogenic Fusarium oxysporum f. sp. dianthi. Appl Environ. Microbiol. 59:74–32.

    PubMed  CAS  Google Scholar 

  56. Hamdan, H., D. M. Weiler, and L. S. Thomashow. 1991. Relative importance of fluorescent siderophores and other factors in biological control of Gaeuman-nomyces graminis var. tritici by Pseudomonas fluorescens 2–79 and M4–80R. Appl. Environ. Microbiol. 57:3270–3277.

    PubMed  CAS  Google Scholar 

  57. Kraus, J. and J. E. Loper. 1992. Lack of evidence for a role of antifungal metabolite production by Pseudomonas fluorescens Pf-5 in biological control of Pythium damping-off of cucumber. Phytopathology 82:264–271.

    Google Scholar 

  58. Paulitz, T. C. and J. E. Loper. 1991. Lack of a role for fluorescent siderophore production in the biological control of Pythium damping-off of cucumber by a strain of Pseudomonas putida. Phytopathology 81:930–935.

    Google Scholar 

  59. Lemanceau, P. and C. Alabouvette. 1993. Suppression of fusarium wilts by fluorescent pseudomonads: mechanisms and applications. Biocontrol Sci. Technol. 3:219–234.

    Google Scholar 

  60. Duijff, B. 1994. Suppression of Fusarium Wilt by Fluorescent Pseudomonas spp.: Mechanisms, Influence of Environmental Factors and Effects on Plant Iron Nutrition. Ph.D. Diss., Utrecht University, Utrecht, The Netherlands.

    Google Scholar 

  61. van der Hofstad, G. A. J. M., J. D. Marugg, G. M. Verjeans, and P. J. Weisbeek. 1986. Characterization and structural analysis of siderophore produced by PGPR strain Pseudomonas putida WCS358. In Iron, Siderophores, and Plant Diseases, ed. T. R. Swinburne, pp. 71–75. Plenum, New York.

    Google Scholar 

  62. Marugg, J. D., M. Van Spanje, W. P. M. Hoekstra, B. Schippers, and P. J. Weisbeek. 1985. Isolation and analysis of genes involved in siderophore biosynthesis of plant growth-promoting Pseudomonas putida WCS358. J. Bacteriol. 164:563–570.

    PubMed  CAS  Google Scholar 

  63. Marugg, J. D., H. B. Nielander, A. J. G. Horrevoets, I. van Megen, I. van Genderen, and P. J. Weisbeek. 1988. Genetic organization and transcriptional analysis of a major gene cluster involved in siderophore biosynthesis in Pseudomonas putida WCS358. J. Bacteriol. 170:1812–1819.

    PubMed  CAS  Google Scholar 

  64. Bitter, W., J. D. Marugg, L. A. de Weger, J. Thommassen, and P. J. Weisbeek. 1991. The ferric-pseudobactin receptor PupA of Pseudomonas putida WCS358: homology to TonB dependent Escherichia coli receptors and specificity of the protein. Mol. Microbiol. 5:647–655.

    PubMed  CAS  Google Scholar 

  65. Bitter, W., J. Thommassen, and P. J. Weisbeek. 1993. Identification and characterization of the exbB, exbD, and tonB genes of Pseudomonas putida WCS358: their involvement in ferric pseudobactin transport. Mol. Microbiol. 7:117–131.

    PubMed  CAS  Google Scholar 

  66. Raaijmakers, J. 1994. Microbial Interactions in the Rhizosphere: Root Colonization by Pseudomonas spp. and Suppression of Fusarium Wilt. Ph.D. Diss., Utrecht University, Utrecht, The Netherlands.

    Google Scholar 

  67. Keel, C., C. Voisard, C.-H. Berling, G. Kahr, and G. Défago. 1989. Iron sufficiency, a prerequisite for suppression of tobacco black root rot by P. fluorescens strain CHA0 under gnotobiotic conditions. Phytopathology 79:584–589.

    Google Scholar 

  68. Visca, P., G. Colotti, L. Serino, D. Verzili, N. Orsi, and E. Chancone. 1992. Metal regulation of siderophore synthesis in Pseudomonas aeruginosa and functional effects of siderophore-metal complexes. Appl. Environ. Microbiol. 58:2886–2893.

    PubMed  CAS  Google Scholar 

  69. Meyer, J.-M., P. Azelvendre, and C. Georges. 1992. Iron metabolism in Pseudomonas: salicylic acid, a siderophore of Pseudomonas fluorescens CHA0. BioFactors 4: 23–27.

    PubMed  CAS  Google Scholar 

  70. Buysens, S., J. Poppe, and M. Höfte. 1994. Role of siderophores in plant growth stimulation and antagonism by Pseudomonas aeruginosa 7NSK2. In Improving Plant Productivity with Rhizobacteria, eds. M. H. Ryder, P.M. Stephens, and G.D. Bowen, pp.139–141. CSIRO Division of Soils, Adelaide, Australia.

    Google Scholar 

  71. Loper, J. E. and S. E. Lindow. 1994. A biological sensor for iron available to bacteria in their habitats on plant surfaces. Appl. Environ. Microbiol. 60:1934–1941.

    PubMed  CAS  Google Scholar 

  72. de Weger, L. A., L. C. Dekkers, A. van der Bij, and B. J. J. Lugtenberg. 1994. Use of phosphate-reporter bacteria to study phosphate limitation in the rhizo-sphere and in bulk soil. Mol. Plant-Microbe Interact. 7:32–38.

    Google Scholar 

  73. Nelson, E. B., W.-L. Chao, J. M. Norton, G. T. Nash, and G. E. Harman. 1986. Attachment of Enterobacter cloacae to hyphae of Pythium ultimum: possible role in the biological control of Pythium preemergence damping-off. Phytopathology 76:327–335.

    Google Scholar 

  74. Di Pietro, A. M. Lorito, C. K. Hayes, R. M. Broadway, and G. E. Harman. 1993. Endochitinase from Gliocladium virens: isolation, characterization, and synergistic antifungal activity in combination with gliotoxin. Phytopathology 83:308–313.

    Google Scholar 

  75. Sundheim, L., A. R. Poplawski, and A. H. Ellingboe. 1988. Molecular cloning of two chitinase genes from Serratia marcescens and their expression in Pseudomonas species. Physiol. Mol. Plant Pathol. 33:483–491.

    CAS  Google Scholar 

  76. Jones, J. D. G., K. L. Grady, T. V. Suslow, and J. R. Bedbrook. 1986. Isolation and characterization of genes encoding two chitinase enzymes from Serratia marcescens. EMBO J. 5:467–473.

    PubMed  CAS  Google Scholar 

  77. Shapira, R., A. Ordentlich, I. Chet, and A. B. Oppenheim. 1989. Control of plant diseases by chitinase expressed from cloned DNA in Escherichia coli. Phytopathology 79:1246–1249.

    CAS  Google Scholar 

  78. Chet, I., Z. Barak, and A. Oppenheim. 1993. Genetic engineering of microorganisms for improved biocontrol activity. In Biotechnology in Plant Disease Control, ed. I. Chet, pp. 211–235. John Wiley, New York.

    Google Scholar 

  79. Gaffney, T. D., S. T. Lam, J. Ligon, K. Gates, A. Frazelle, J. DiMaio, S. Hill, S. Goodwin, N. Torkewitz, A. M. Allshouse, H.-J. Kempf, and J. O. Becker. 1994. Global regulation of expression of antifungal factors by a Pseudomonas fluorescens biological control strain. Mol. Plant-Microbe Interact. 7:455–463.

    PubMed  CAS  Google Scholar 

  80. Georgakopoulos, D., M. Hendson, N. J. Panopoulos, and M. N. Schroth. 1994. Cloning of a phenazine biosynthetic locus of Pseudomonas aureofaciens PGS12 and analysis of its expression in vitro with the ice nucleation reporter gene. Appl. Environ. Microbiol. 60:2931–2938.

    PubMed  CAS  Google Scholar 

  81. Sacherer, P., G. Défago, and D. Haas. 1994. Extracellular protease and phospholipase C are controlled by the global regulatory gene gacA in the biocontrol strain Pseudomonas fluorescens CHA0. FEMS Microbiol. Lett. 116:155–160.

    PubMed  CAS  Google Scholar 

  82. Fenton, A. M., J. J. Crowley, P. Shanahan, and F. ÒGara. 1993. Cloning and heterologous expression of genes involved in 2,4-diacetylphloroglucinol biosynthesis in Pseudomonas strains. In Abstracts of the Fourth International Symposium on Pseudomonas: Biotechnology and Molecular Biology, ed. R.E.W. Hancock, p. 49, Vancouver, B.C., Canada.

    Google Scholar 

  83. Kloepper, J. W., S. Tuzun, L. Liu, and G. Wei. 1993. Plant growth-promoting rhizobacteria as inducers of systemic disease resistance. In Pest Management: Biologically Based Strategies, eds. R. D. Lumsden, and J. L. Vaughn, ACS Symposium Series, pp. 156–165. American Chemical Society, Washington, DC.

    Google Scholar 

  84. Maurhofer, M., C. Hase, P. Meuwley, J.-P. Métraux, and G. Défago. 1994. Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHA0: influence of gacA and of pyoverdine production. Phytopathology 84:139–146.

    CAS  Google Scholar 

  85. Sayler, R. J., G. Wei, J. W. Kloepper, and S. Tuzun. 1994. Induction of ß-1,3-glucanases and chitinases in tobacco by seed treatment with select strains of plant growth promoting rhizobacteria. Phytopathology 84:1107.

    Google Scholar 

  86. Wei, G., S. Tuzun, and J. W. Kloepper. 1992. Comparison of biochemical responses in cucumber systemically protected against Colletotrichum obiculare by prior leaf inoculation with the pathogen or seed treatment with rhizobacteria. Phytopathology 82:1109.

    Google Scholar 

  87. van Peer, R. and B. Schippers. 1992. Lipopolysaccharides of plant growth-promoting Pseudomonas sp. strain WCS417r induce resistance in carnation to Fusarium wilt. Netherlands J. Plant Pathol. 98:129–139.

    Google Scholar 

  88. van Peer, R. 1990. Microbial Interactions and Plant Responses in Soilless Cultures: Root Colonization by Pseudomonads, Mechanisms, Plant Responses, and Effects on Fusarium Wilt. Ph.D. Diss., Utrecht University, Utrecht, The Netherlands.

    Google Scholar 

  89. Kempf, H.-J., P. H. Bauer, and M. N. Schroth. 1993. Herbicolin A associated with crown and roots of wheat after seed treatment with Erwinia herbicola B247. Phytopathology 83:213–216.

    CAS  Google Scholar 

  90. Laville, J. C., Voisard, C. Keel, M. Maurhofer, G. Défago, and D. Haas. 1992. Global control in Pseudomonas fluorescens mediating antibiotic synthesis and suppression of black root rot of tobacco. Proc. Nat. Acad. Sci. USA 89:1562–1566.

    PubMed  CAS  Google Scholar 

  91. Enyadi, A. J., N. Yalpani, P. Silverman, and I. Raskin. 1992. Signal molecules in systemic plant resistance to pathogens and pests. Cell 70: 879–886.

    Google Scholar 

  92. Raskin, I. 1992. Role of salicylic acid in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43:439–463.

    CAS  Google Scholar 

  93. Williams, S. T. and J. C. Vickers. 1986. The ecology of antibiotic production. Microbial Ecol. 12:43–52.

    CAS  Google Scholar 

  94. Thomashow, L. S. and D. M. Weiler. 1988. Role of a phenazine antibiotic from Pseudomonas fluorescens 2–79 in biological control of Gaeumannomyces graminis var. tritici. J. Bacteriol. 170:3499–3508.

    PubMed  CAS  Google Scholar 

  95. Thomashow, L. S., D. M. Weiler, R. F. Bonsall, and L. S. Pierson III. 1990. Production of the antibiotic phenazine-1-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Appl. Environ. Microbiol. 56:908–912.

    PubMed  CAS  Google Scholar 

  96. Keel, C, U. Schnider, M. Maurhofer, C. Voisard, J. Laville, U. Burger, P. Wirthner, D. Haas, and G. Défago. 1992. Suppression of root diseases by Pseudomonas fluorescens CHA0: importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Mol. Plant-Microbe Interact. 5:4–13.

    CAS  Google Scholar 

  97. Kempf, H.-J. and G. Wolf. 1989. Erwinia herbicola as a biocontrol agent of Fusarium culmorum and Puccinia recondita f. sp. tritici on wheat. Phytopathology 79:990–994.

    Google Scholar 

  98. Homma, Y. 1994. Mechanisms in biological control — focused on the antibiotic pyrrolnitrin. In Improving Plant Productivity with Rhizobacteria, eds. M. H. Ryder, P. M. Stephens, and G. D. Bowen, pp. 100–103. CSIRO Division of Soils, Adelaide, Australia.

    Google Scholar 

  99. Kempf, H. J., S. Sinterhauf, M. Muller, J. O. Becker, and P. Pachlatko. 1993. Production of pyrrolnitrin by a biocontrol bacterium in the rhizosphere of cotton and the spermosphere of barley. In Abstracts of the 6th International Congress of Plant Pathology, Montreal, Canada, p. 266.

    Google Scholar 

  100. Lumsden, R. D., J. C. Locke, S. T. Adkins, J. F. Walter, and C. J. Rideout. 1992. Isolation and localization of the antibiotic gliotoxin produced by Gliocladium virens from alginate prill in soil and soilless media. Phytopathology 82:230–235.

    CAS  Google Scholar 

  101. Colyer, P. D. and M. S. Mount. 1984. Bacterization of potatoes with Pseudomonas putida and its influence on postharvest soft rot diseases. Plant Disease 68:703–706.

    Google Scholar 

  102. Gutterson, N. I., T. J. Layton, J. S. Ziegle, and G. J. Warren. 1986. Molecular cloning of genetic determinants for inhibition of fungal growth by a fluorescent pseudomonad. J. Bacteriol. 165:696–703.

    PubMed  CAS  Google Scholar 

  103. Weiler, D. M., W. J. Howie, and R. J. Cook. 1988. Relationship between in vitro inhibition of Gaeumannomyces graminis var. tritici and suppression of take-all of wheat by fluorescent pseudomonads. Phytopathology 78:1094–1100.

    Google Scholar 

  104. Homma, Y. and T. Suzui. 1989. Role of antibiotic production in suppression of radish damping-off by seed bacterization with Pseudomonas cepacia. Ann. Phytopathol. Soc. Jpn 55:643–652.

    CAS  Google Scholar 

  105. Poplawski, A. R. and A. H. Ellingboe. 1989. Take-all suppressive properties of bacterial mutants affected in suppressiveness. Phytopathology 79:143–146.

    Google Scholar 

  106. Voisard, G, G Keel, D. Haas, and G. Défago. 1989. Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J. 8:351–358.

    PubMed  CAS  Google Scholar 

  107. Flaishman, M., Z. Eyal, G Voisard, and D. Haas. 1990. Suppression of Septoria tritici by phenazine- or siderophore-deficient mutants of Pseudomonas. Curr. Microbiol. 20:121–124.

    CAS  Google Scholar 

  108. Keel, G, P. Wirthner, T. Oberänsli, G Voisard, U. Berger, D. Haas, and G. Défago. 1990. Pseudomonads as antagonists of plant pathogens in the rhizo-sphere: role of the antibiotic 2,4-diacetylphloroglucinol in the suppression of black root rot of tobacco. Symbiosis 9:327–341.

    CAS  Google Scholar 

  109. Vincent, M. N., L. A. Harrison, J. M. Brackin, P. A. Kovacevich, P. Mukerji, D. M. Weiler, and E. A. Pierson. 1991. Genetic analysis of the antifungal activity of a soilborne Pseudomonas aureofaciens strain. Appl. Environ. Microbiol. 57: 2928–2934.

    PubMed  CAS  Google Scholar 

  110. Fenton, A. M., P. M. Stephens, J. Crowley, M. ÒCallaghan, and F. ÒGara. 1992. Exploitation of gene(s) involved in 2,4-diacetylphloroglucinol biosynthesis to confer a new biocontrol capability to a Pseudomonas strain. Appl. Environ. Microbiol. 58:3873–3878.

    PubMed  CAS  Google Scholar 

  111. Harrison, L. A., L. Letendre, P. Kovacevich, E. A. Pierson, and D. M. Weiler. 1993. Purification of an antibiotic effective against Gaeumannomyces graminis var. tritici produced by a biocontrol agent, Pseudomonas aureofaciens. Soil Biol. Biochem. 25:215–221.

    CAS  Google Scholar 

  112. Pfender, W. F., J. Kraus, and J. E. Loper. 1993. A genomic region from Pseudomonas fluorescens Pf-5 required for pyrrolnitrin production and inhibition of Pyrenophora tritici-repentis in wheat straw. Phytopathology 83:1223–1228.

    CAS  Google Scholar 

  113. Pierson III L. S., and L. S. Thomashow. 1993. Cloning and heterologous expression of the phenazine biosynthetic locus from Pseudomonas aureofaciens 30–84. Mol. Plant-Microbe Interact. 5:330–339.

    Google Scholar 

  114. Lindow, S. E. 1988. Lack of correlation of in vitro antibiosis with antagonism of ice nucleation active bacteria on leaf surfaces by non-ice nucleation active bacteria. Phytopathology 78:444–450.

    Google Scholar 

  115. McLoughlin, T. J., J. P. Quinn, A. Bettermann, and R. Bookland. 1992. Pseudomonas cepacia suppression of sunflower wilt fungus and the role of antifungal compounds in controlling the disease. Appl. Environ. Microbiol. 58:1760–1763.

    PubMed  CAS  Google Scholar 

  116. Bangera, M. G., D. M. Weiler, and L. S. Thomashow. 1995. Genetic analysis of the 2,4-diacetylphloroglucinol biosynthetic locus from Pseudomonas fluorescens Q2–87. In Advances in Molecular Genetics of Plant-Microbe Interactions, vol. 3, eds. M. J. Daniels, J. A. Downie, and A. E. Osbourn, pp. 383–386. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  117. Lam, S. T., T. D. Gaffney, R. A. Frazelle, K. Gates, J. DiMaio, N. Torkewitz, J. Ligon, S. Hill, S. Goodwin, and H.-J. Kempf. 1993. Two genes which regulate the coordinated expression of antifungal activities in Pseudomonas fluorescens. In Abstracts of the Fourth International Symposium on Pseudomonas: Biotechnology and Molecular Biology, ed. R.E.W. Hancock, p. 209, Vancouver, B.C., Canada.

    Google Scholar 

  118. Sarniguet, A., J. Kraus, and J. E. Loper. 1994. An rpoS homologue affects antibiotic production, ecological fitness, and biological control activity of Pseudomonas fluorescens Pf-5. Mol. Ecol. 3:607.

    Google Scholar 

  119. Gutterson, N., W. Howie, and T. Suslow. 1990. Enhancing efficacies of biocon-trol agents by the use of biotechnology, In New Directions in Biocontrol, eds. R. Baker and P. Dunn, pp. 749–765. A. R. Liss, New York.

    Google Scholar 

  120. Howie, W., D. Matsubara, N. Gutterson, and T. Suslow. 1989. Directed enhancement of biocontrol in Pseudomonas by constitutive antibiotic biosynthesis. Phytopathology 79:1160.

    Google Scholar 

  121. James, D. W. and N. I. Gutterson. 1986. Multiple antibiotics produced by Pseudomonas fluorescens Hv37a and their differential regulation by glucose. Appl. Environ. Microbiol. 52:1183–1189.

    PubMed  CAS  Google Scholar 

  122. Turner, J. M. and A. J. Messenger. 1986. Occurrence, biochemistry and physiology of phenazine pigment production. Adv. Microb. Physiol 27:211–275.

    PubMed  CAS  Google Scholar 

  123. Weiler, D. M. and R. J. Cook. 1983. Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads. Phytopathology 73:463–469.

    Google Scholar 

  124. Becker, J. O., C. A. Hepfer, G. Y. Yuen, S. D. Van Gundy, M. N. Schroth, J. G. Hancock, A. R. Weinhold, and T. Bowman. 1990. Effect of rhizobacteria and metham-sodium on growth and root microflora of celery cultivars. Phytopathology 80:206–211.

    CAS  Google Scholar 

  125. Georgakopolous, D. G., M. Hendson, N. J. Panopoulos, and M. N. Schroth. 1994. Analysis of expression of a phenazine biosynthesis locus from Pseudomonas aureofaciens PGS12 on seeds with a mutant carrying a phenazine biosynthesis locus-ice nucleation reporter gene fusion. Appl Environ. Microbiol. 60:4573–4579.

    Google Scholar 

  126. Flaishman, M., Z. Eyal, C. Voisard, and D. Haas. 1990. Suppression of Septoria tritici by phenazine- or siderophore-deficient mutants of Pseudomonas. Curr. Microbiol. 20:121–124.

    CAS  Google Scholar 

  127. Ownley, B. H., D. M. Weiler, and L. S. Thomashow. 1992. Influence of in situ and in vitro pH on suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2–79. Phytopathology 82:178–184.

    CAS  Google Scholar 

  128. Mazzola, M., R. J. Cook, L. S. Thomashow, D. M. Weiler, and L. S. Pierson III. 1992. Contribution of phenazine antibiotic synthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Appl Environ. Microbiol. 58:2616–2624.

    PubMed  CAS  Google Scholar 

  129. Ownley, B. H., D. M. Weiler, and J. R. Alldredge. 1991. Relation of soil chemical and physical factors with suppression of take-all by Pseudomonas fluorescens 2–79. In Plant Growth-Promoting Rhizobacteria—Progress and Prospects, eds. C. Keel, B. Koller, and G. Défago, IOBC/WPRS Bull. 14(8):299–301.

    Google Scholar 

  130. Slininger, P. J. and M. A. Jackson. 1992. Nutritional factors regulating growth and accumulation of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2–79. Appl. Microbiol Biotechnol 37:388–392.

    CAS  Google Scholar 

  131. Bowden, K., J. L. Broadbent, and W. J. Ross. 1965. Some simple anthelmintics. British J. Pharmacol 24:717–724.

    Google Scholar 

  132. Reddi, T. K. K., Y. P. Khudyakov, and A. V. Borovkov. 1969. Pseudomonas fluorescens strain 26-O, a producer of phytotoxic substances. Mikrobiologiya 38:909–913.

    CAS  Google Scholar 

  133. Reddi, T. K. K. and A. V. Borovkov. 1970. Antibiotic properties of 2,4-diacetyl-phloroglucinol (2,4-diacetyl-l,3,5-trihydroxybenzene) produced by Pseudomonas fluorescens strain 26-O. Antibiotiki (Moscow) 15:19–21.

    PubMed  CAS  Google Scholar 

  134. Kataryan, B. T. and G. G. Torgashova. 1976. Spectrum of herbicidal activity of 2,4-diacetylphloroglucinol. Doklady Akademii Nauk Armyanskoi SSR 63:109–112.

    CAS  Google Scholar 

  135. Broadbent, D., R. P. Mabelis, and H. Spencer. 1976. C-Acetylphloroglucinols from Pseudomonas fluorescens. Phytochemistry 15:1785.

    CAS  Google Scholar 

  136. Yoneyama, K. M. Konnai, I. Honda, S. Yoshida, N. Takahashi, H. Koike, and Y. Inoue. 1990. Phloroglucinol derivatives as potent photosystem II inhibitors. Z. Naturforschung 45c:317–321.

    Google Scholar 

  137. Tomás-Lorente, F., E. Iniesta-Sanmartín, F. Tomás-Barberán, W. Trowitzsch-Kienast, and V. Wray. 1989. Antifungal phloroglucinol derivatives and lipophilic flavonoids from Helichrysum decumbens. Phytochemistry 28:1613–1615.

    Google Scholar 

  138. Tada, M. T. Takakuwa, M. Nagai, and T. Yoshii. 1990. Antiviral and antimicrobial activity of 2,4-diacetylphloroglucinols, 2-acetylcyclohexane-1,3-diones and 2-carboxamidecyclohexane-1,3-diones. Agric. Biol Chem. 54:3061–3063.

    CAS  Google Scholar 

  139. Shanahan, P., J. D. Glennon, J. J. Crowley, D. F. Donnelly, and F. ÒGara. 1993. Liquid Chromatographic assay of microbially derived phloroglucinol antibiotics for establishing the biosynthetic route to production, and the factors affecting their regulation. Analytica Chem. Acta 272:271–277.

    CAS  Google Scholar 

  140. Katz, L. and S. Donadio. 1993. Polyketide synthesis: prospects for hybrid antibiotics. Annu. Rev. Microbiol. 47:875–912.

    PubMed  CAS  Google Scholar 

  141. Shanahan, P., D. J. ÒSullivan, P. Simpson, J. D. Glennon, and F. ÒGara. 1992. Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl. Environ. Microbiol. 58:353–358.

    PubMed  CAS  Google Scholar 

  142. Dutrecq, A., P. Debras, J. Stevaux, and M. Marlier. 1991. Activity of 2,4-diacetylphloroglucinol isolated from a strain of Pseudomonas fluorescens to Gaeuman-nomyces graminis var. tritici. In Biotic Interactions and Soil-borne Diseases, eds. A B. R. Beemster, G. J. Bollen, M. Gerlagh, M. A Ruissen, B. Schippers, and A Tempel, pp. 252–257. Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  143. Garagulya, A. D., E. A. Kiprianova, and O. I. Boiko. 1974. Antibiotic effect of bacteria from the genus Pseudomonas on phytopathogenic fungi. Mikrobiologische Z. (Kiev) 36:197–202.

    CAS  Google Scholar 

  144. Pidoplichko, V. N. and A. D. Garagulya. 1974. Effect of antagonistic bacteria on the development of wheat root rot. Microbiologische Z. (Kiev) 36:599–602.

    CAS  Google Scholar 

  145. Howell, C. R. and R. D. Stipanovic. 1979. Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology 69:480–482.

    CAS  Google Scholar 

  146. Nowak-Thompson, B., S. J. Gould, J. Kraus, and J. E. Loper. 1994. Production of 2,4-diacetylphloroglucinol by the biocontrol agent Pseudomonas fluorescens Pf-5. Can. J. Microbiol. 40:1064–1066.

    CAS  Google Scholar 

  147. Maurhofer, M., C. Keel, U. Schnider, C. Voisard, D. Haas, and G. Défago. 1992. Influence of enhanced antibiotic production in Pseudomonas fluorescens strain CHA0 on its disease suppressive capacity. Phytopathology 82:190–195.

    CAS  Google Scholar 

  148. Pierson, E. A., and D. M. Weiler. 1994. Use of mixtures of fluorescent pseudomonads to suppress take-all and improve the growth of wheat. Phytopathology 84:940–947.

    Google Scholar 

  149. Hara, H., M. Bangera, D.-S. Kim, D. M. Weiler, and L. S. Thomashow. 1994. Effect of transfer and expression of antibiotic biosynthesis genes on biological control activity of fluorescent pseudomonads. In Improving Plant Productivity with Rhizobacteria, eds. M. H. Ryder, P. M. Stephens and G. D. Bowen, pp. 247–249. CSIRO Division of Soils, Adelaide, South Australia.

    Google Scholar 

  150. Cuppels, D. A., C. R. Howell, R. D. Stipanovic, A. Stoessl, and J. B. Strothers. 1986. Biosynthesis of pyoluteorin: a mixed polyketide-tricarboxylic acid cycle origin demonstrated by [1,2-13C2] acetate incorporation. Z. Naturforschung 41c: 532–536.

    Google Scholar 

  151. Nowak-Thompson, B., S. J. Gould, J. Kraus, and J. E. Loper. 1994. Recent studies on anti-fungal metabolites produced by Pseudomonas fluorescens Pf-5. Mol. Ecol. 3:612.

    Google Scholar 

  152. Bencini, D. A., C. R. Howell, and J. R. Wild. 1983. Production of phenolic metabolites by a soil pseudomonad. Soil Biol Biochem. 15:491–492.

    CAS  Google Scholar 

  153. Howell, C. R. and R. D. Stipanovic. 1980. Suppression of Pythium ultimum-induced damping-off of cotton seedlings by Pseudomonas fluorescens Pf-5 and its antibiotic, pyoluteorin. Phytopathology 70:712–715.

    CAS  Google Scholar 

  154. Kraus, J. and J. E. Loper. 1995. Characterization of a genomic region required for production of the antibiotic pyoluteorin by the biological control agent Pseudomonas fluorescens Pf-5. Appl. Environ. Microbiol. 61:849–854.

    PubMed  CAS  Google Scholar 

  155. Chang, C. J., H. G. Floss, D. J. Hook, A. Mabe, P. E. Manni, L. L. Martin, K. Schröder, and T. L. Shieh. 1981. The biosynthesis of the antibiotic pyrrolnitrin by Pseudomonas aureofaciens. J. Antibiotics 34:555–566.

    CAS  Google Scholar 

  156. Mahoney, N. E. and J. N. Roitman. 1990. High-performance liquid chromatographic analysis of phenylpyrroles produced by Pseudomonas cepacia. J. Chromatog. 508:247–251.

    CAS  Google Scholar 

  157. Wiesner, W., K.-H. van Pée, and F. Lingens. 1988. Purification and characterization of a novel bacterial non-heme chloroperoxidase from Pseudomonas pyrrocinia. J. Biol. Chem. 263:13725–13732.

    PubMed  CAS  Google Scholar 

  158. Wolfframm, C., F. Lingens, R. Mutzel, and K.-H. van Pée. 1993. Chloro-peroxidase-encoding gene from Pseudomonas pyrrocinia: sequence, expression in heterologous hosts, and purification of the enzyme. Gene 130:131–135.

    PubMed  CAS  Google Scholar 

  159. Elander, R. P., J. A. Mabe, R. H. Hamill, and M. Gorman. 1968. Metabolism of tryptophans by Pseudomonas aureofaciens. Appl. Microbiol. 16:753–758.

    PubMed  CAS  Google Scholar 

  160. Lambert, B., F. Leyns, L. van Rooyen, F. Gosselé, Y. Papon, and J. Swings. 1987. Rhizobacteria of maize and their antifungal activities. Appl Environ. Microbiol. 53:1866–1871.

    PubMed  CAS  Google Scholar 

  161. Jayaswaral, R. K., M. A. Fernandez, L. Visintin, and R. S. Upadhyay. 1991. Transposon Tn5–259 mutagenesis of Pseudomonas cepacia to isolate mutants deficient in antifungal activity. Can. J. Microbiol. 38:309–312.

    Google Scholar 

  162. Janisiewicz, W. J. and J. Roitman. 1988. Biological control of blue mold and gray mold on apple and pear with Pseudomonas cepacia. Phytopathology 78:1697–1700.

    Google Scholar 

  163. Hill, D. S., J. I. Stein, N. R. Torkewitz, A. M. Morse, C. R. Howell, J. P. Pachlatko, J. O. Becker, and J. M. Ligon. 1994. Cloning of genes involved in the synthesis of pyrrolnitrin from Pseudomonas fluorescens and role of pyrrolnitrin synthesis in biological control of plant disease. Appl. Environ. Microbiol. 60:78–85.

    PubMed  CAS  Google Scholar 

  164. Ahl, P., C. Voisard, and G. Défago. 1986. Iron-bound siderophores, cyanic acid, and antibiotics involved in suppression of Thielaviopsis basicola by a Pseudomonas fluorescens strain. J. Phytopathol. 166:121–134.

    Google Scholar 

  165. Haas, D., C. T. Bull, C. Keel, J. Laville, M. Maurhofer, A. Natsch, P. Sacherer, U. Schnider, C. Voisard, C. von Schroetter, and G. Défago. 1993. Regulation of secondary metabolites relevant to biocontrol in Pseudomonas fluorescens CHA0. In Abstracts of the Fourth International Symposium on Pseudomonas: Biotechnology and Molecular Biology, ed. R. E. W. Hancock, p. 36, Vancouver, B.C., Canada.

    Google Scholar 

  166. Zimmermann, A., C. Reimmann, M. Galimand, and D. Haas. 1991. Anaerobic growth and cyanide synthesis of Pseudomonas aeruginosa depend on anr, a regulatory gene homologous with fnr of Escherichia coli. Mol. Microbiol. 5:1483–1490.

    PubMed  CAS  Google Scholar 

  167. Bakker, P. A. H. M., J. G. Lamers, A. W. Bakker, J. D. Marrugg, P. J. Weisbeek, and B. Schippers. 1986. The role of siderophores in potato tuber yield increase by Pseudomonas putida in short rotation of potato. Netherlands J. Plant Pathol. 92:249–256.

    Google Scholar 

  168. Bakker, P. A. H. M., R. Van Peer, and B. Schippers. 1991. Suppression of soil-borne plant pathogens by fluorescent pseudomonads: mechanisms and prospects. In Biotic Interactions and Soil-borne Diseases, eds. A. B. R. Beemster, G. J. Bollen, M. Gerlagh, M. A. Ruissen, B. Schippers, and A. Tempel, pp. 217–230. Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  169. Toohey, J. I., C. D. Nelson, and G. Krotkov. 1965. Barren ring, a description and study of causal relationships. Can. J. Bot. 43:1043–1054.

    Google Scholar 

  170. Nelson, C. D. and J. I. Toohey. 1968. Controlling the growth of algae and noxious plants. United States Patent 3,367,765. Chemical Abstracts 68: 77160.

    Google Scholar 

  171. Toohey, J. I., C. D. Nelson, and G. Krotkov. 1965. Toxicity of phenazine carboxylic acids to some bacteria, algae, higher plants, and animals. Can. J. Bot. 43: 1151–1155.

    CAS  Google Scholar 

  172. Gutterson, N., J. S. Ziegle, G. J. Warren, and T. J. Layton. 1988. Genetic determinants for catabolite induction of antibiotic biosynthesis in Pseudomonas fluorescens Hv37a. J. Bacteriol 170: 380–385.

    PubMed  CAS  Google Scholar 

  173. Thomashow, L. S., D. W. Essar, D. K. Fujimoto, L. S. Pierson III, C. Thrane, and D. M. Weiler. 1993. Genetic and biochemical determinants of phenazine antibiotic production by fluorescent pseudomonads that suppress take-all disease of wheat. In Advances in Molecular Genetics of Plant-Microbe Interactions, vol 2, eds. E. W. Nester and D. P. S. Verma, pp. 535–541. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  174. Pierson III, L. S., V. D. Kepenne, and D. W. Wood. 1994. Phenazine antibiotic biosynthesis in Pseudomonas aureofaciens 30–84 is regulated by PhzR in response to cell density. J. Bacteriol. 176: 3966–3974.

    PubMed  CAS  Google Scholar 

  175. Fuqua, W. C, S. C. Winans, and E. P. Greenberg. 1994. Quorum sensing in bacteria: the LuxR/LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 176: 269–275.

    PubMed  CAS  Google Scholar 

  176. Wood, D. W., and L. S. Pierson III. 1994. A diffusible signal molecule regulates phenazine expression in Pseudomonas aureofaciens 30–84. Phytopathology 84: 1082.

    Google Scholar 

  177. Schröder, J. and G. Schröder. 1990. Stilbene and chalcone synthases: related enzymes with key functions in plant-specific pathways. Z. Naturforschung 45c: 1–8.

    Google Scholar 

  178. Saier Jr., M. H. 1994. Computer-aided analysis of transport protein sequences: gleaning evidence concerning function, structure, biogenesis, and function. Microbiol. Rev. 58: 71–93.

    PubMed  CAS  Google Scholar 

  179. van Elsas, J. D. and L. S. van Overbeek. 1993. Bacterial responses to soil stimuli. In Starvation in Bacteria, ed. S. Kjellberg, pp. 55–79. Plenum Press, New York.

    Google Scholar 

  180. Corbell, N. A., J. Kraus, and J. E. Loper. 1994. Global regulation of secondary metabolism in Pseudomonas fluorescens Pf-5. Mol. Ecol. 3: 608.

    Google Scholar 

  181. Lam, S. T., T. D. Gaffney, R. A. Frazelle, K. Gates, J. DiMaio, N. Torkewitz, J. Ligon, S. Hill, S. Goodwin, and H.-J. Kempf. 1994. LemA and GacA regulate the coordinated expression of antifungal activities in Pseudomonas fluorescens. Mol. Ecol. 3: 620.

    Google Scholar 

  182. Parkinson, J. S., and E. C. Kofoid. 1992. Communication modules in bacterial signalling molecules. Annu. Rev. Genet. 26: 71–112.

    PubMed  CAS  Google Scholar 

  183. Willis, D. K., J. J. Rich, T. G. Kinscherf, and T. Kitten. 1994. Genetic regulation in plant pathogenic pseudomonads. In Genetic Engineering, vol. 15, ed. J. T. Setlow, pp. 167–193. Plenum Press, New York.

    Google Scholar 

  184. Meighen, E. A. 1991. Molecular biology of bacterial bioluminescence. Microbiol. Rev. 55: 123–142.

    PubMed  CAS  Google Scholar 

  185. Williams, P., N. J. Bainton, S. Swift, S. R. Chhabra, M. K. Winson, G. S. A. B. Stewart, G. P. C. Salmond, and B. W. Bycroft. 1992. Small molecule-mediated density-dependent control of gene expression in prokaryotes: bioluminescence and the biosynthesis of carbapenem antibiotics. FEMS Microbiol. Lett. 100: 161–168.

    CAS  Google Scholar 

  186. Hengge-Aronis, R. 1993. Survival of hunger and stress: the role of rpoS in early stationary phase gene regulation in E. coli. Cell 72: 165–168.

    CAS  Google Scholar 

  187. Hengge-Aronis, R. 1993. The role of rpoS in early stationary-phase gene regulation in Escherichia coli K12. In Starvation in Bacteria, ed. S. Kjellberg, pp. 171–200. Plenum Press, New York.

    Google Scholar 

  188. Kolter, R., D. A. Siegele, and A. Tormo. 1993. The stationary phase of the bacterial life cycle. Annu. Rev. Microbiol. 47: 855–874.

    PubMed  CAS  Google Scholar 

  189. Gambello, M. J., and B. H. Iglewski. 1991. Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J. Bacteriol. 173: 3000–3009.

    PubMed  CAS  Google Scholar 

  190. Devine, J. H., C. Countryman, and T. O. Baldwin. 1988. Nucleotide sequence of the luxR and luxI genes and structure of the primary regulatory region of the lux operon of Vibrio fischeri ATCC 7744. Biochemistry 27: 837–842.

    CAS  Google Scholar 

  191. Grewal, S., B. Han, and K. Johnstone. 1994. Regulation of toxin synthesis and phenotypic variation in Pseudomonas tolaasii, cause of brown blotch disease of mushrooms. In Advances in Molecular Genetics of Plant-Microbe Interactions, vol 3, eds. M. J. Daniels J. A. Downie, and A. E. Osbourn, pp. 25–32. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  192. Piper, K. R., S. Beck von Bodman, and S. K. Farrand. 1993. Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction. Nature (London) 271: 570–572.

    Google Scholar 

  193. Bainton, N. J., P. Stead, S. R. Chhabra, B. W. Bycroft, G. P. C. Salmond, G. S. A. B. Stewart, and P. Williams. 1992. N-(3-Oxohexanoyl)-L-homoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora. Biochem. J. 288: 997–1004.

    PubMed  CAS  Google Scholar 

  194. Pirhonen, M., D. Flego, R. Heikinheimo, and E. T. Palva. 1993. A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. EMBO J. 12: 2467–2476.

    PubMed  CAS  Google Scholar 

  195. Jones, S., B. Yu, N. J. Bainton, M. Birdsall, B. W. Bycroft, S. R. Chhabra, A. J. R. Cox, P. Golby, P. J. Reeves, S. Stephens, M. K. Winston, G. P. C. Salmond, G. S. A. B. Stewart, and P. Williams. 1993. The lux autoinducer regulates the production of exoenzyme virulence determinants in Erwinia carotovora andPseudomonas aeruginosa. EMBO J. 12: 2477–2482.

    PubMed  CAS  Google Scholar 

  196. Passador, L., J. M. Cook, M. J. Gambello, L. Rust, and B. H. Iglewski. 1993. Expression of Pseudomonas virulence genes requires cell-to-cell communication. Science 260: 1127–1130.

    PubMed  CAS  Google Scholar 

  197. Wood, D. W. and L. S. Pierson III. 1994. Cell to cell interactions among rhizosphere bacteria influence the expression of phenazine antibiotics in Pseudomonas aureofaciens 30–84. Phytopathology 84: 1134.

    Google Scholar 

  198. Huisman, G. W. and R. Kolter. 1994. Sensing starvation: a homoserine-lactone-dependent signalling pathway in Escherichia coli. Science 265: 537–539.

    CAS  Google Scholar 

  199. Stabb, E. V., L. Johnson, and J. Handelsman. Zwittermycin A-producing strains of Bacillus cereus from diverse soils. Appl. Environ. Microbiol. 4404–412.

    Google Scholar 

  200. Colbert, S. F., M. N. Schroth, A. R. Weinhold, and M. Hendson. 1993. Enhancement of population densities of Pseudomonas putida PpG7 in agricultural ecosystems by selective feeding with the carbon source salicylate. Appl. Environ. Microbiol. 59: 2064–2070.

    PubMed  CAS  Google Scholar 

  201. Colbert, S. F., M. Hendson, M. Ferri, and M. N. Schroth. 1993. Enhanced growth and activity of a biocontrol bacterium genetically altered to utilize salicylate. Appl. Environ. Microbiol. 59: 2071–2076.

    PubMed  CAS  Google Scholar 

  202. Neal Jr., J. L., R. L. Larson, and T. G. Atkinson. 1973. Changes in rhizosphere populations of selected physiological groups of bacteria related to substitution of specific pairs of chromosomes in spring wheat. Plant and Soil. 39: 209–212.

    Google Scholar 

  203. Atkinson, T. G., J. L. Neal Jr., and R. L. Larson. 1975. Genetic control of the rhizosphere microflora of wheat. In Biology and Control of Soil-borne Plant Pathogens, ed. G. W. Bruehl, pp. 116–122. American Phytopathological Society, St. Paul, MN.

    Google Scholar 

  204. Azad, H. R., J. R. Davis, W. C. Schnathorst, and C. I. Kado. 1985. Relationship between rhizoplane and rhizosphere bacteria and verticillium wilt resistance in potato. Arch. Microbiol. 140: 347–351.

    Google Scholar 

  205. Hirano, S. S. and C. D. Upper. 1990. Population biology and epidemiology of Pseudomonas syringae. Annu. Rev. Phytopathol. 28: 155–177.

    Google Scholar 

  206. Larkin, R. P., D. L. Hopkins, and F. N. Martin. 1993. Effect of successive watermelon plantings on Fusarium oxysporum and other microorganisms in soils suppressive and conducive to Fusarium wilt of watermelon. Phytopathology 83: 1097–1105.

    Google Scholar 

  207. Larkin, R. P., D. L. Hopkins, and F. N. Martin. 1993. Ecology of Fusarium oxysporum f. sp. niveum in soils suppressive and conducive to Fusarium wilt of watermelon. Phytopathology 83: 1105–1116.

    Google Scholar 

  208. Aristizabal, W. 1993. Rice Varieties and Biological Control Interactions on Sheath Blight (Rhizoctonia solani) Under Irrigated Conditions. M.S. thesis, Universidad Nacional de Colombia, Bogota.

    Google Scholar 

  209. Savka, M. A. and S. K. Farrand. 1992. Mannityl opine accumulation and exudation by transgenic tobacco. Plant Physiol. 98: 784–789.

    PubMed  CAS  Google Scholar 

  210. Farrand, S. K., M. Wilson, S. E. Lindow, and M. A. Savaka. 1994. Modulating colonization by plant-associated microbes. In Improving Plant Productivity with Rhizosphere Bacteria, eds. M. H. Ryder, P. M. Stephens and G. D. Bowen, pp. 233–237. CSIRO Division of Soils, Glen Osmond, South Australia.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Chapman & Hall

About this chapter

Cite this chapter

Thomashow, L.S., Weller, D.M. (1996). Current Concepts in the Use of Introduced Bacteria for Biological Disease Control: Mechanisms and Antifungal Metabolites. In: Stacey, G., Keen, N.T. (eds) Plant-Microbe Interactions. Plant-Microbe Interactions, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1213-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1213-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8514-4

  • Online ISBN: 978-1-4613-1213-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics