[1]
R.R. Alfano and J.G. Fujimoto, eds., OSA TOPS on Advances in Optical Imaging and Photon Migration, vol. 2, OSA, 1996.
[2]
S.R. Arridge,
Photon measurement density functions. Part 1: Analytical forms, Appl. Opt., 34 (1995), pp. 7395–7409.
CrossRef[3]
S.R. Arridge and J.C. Hebden,
Optical imaging in medicine: II. Modelling and reconstruction, Phys. Med. Biol., 42 (1997), pp. 841–853.
CrossRef[4]
S.R. Arridge and M. Schweiger,
Direct calculation of the moments of the distribution of photon time of flight in tissue with a finite-element method, Appl. Opt., 34 (1995), pp. 2683–2687.
CrossRef[5]
S.R. Arridge and M. Schweiger,
Photon measurement density functions. Part 2: Finite element calculations,Appl. Opt., 34 (1995), pp. 8026–8037.
CrossRef[6]
S.R. Arridge, M. Schweiger, and D.T. Delpy, Iterative reconstruction of near-infrared absorption images, in Inverse Problems in Scattering and Imaging, M.A. Fiddy, ed., vol. 1767, Proc. SPIE, 1992, pp. 372–383.
[7]
S.R. Arridge, M. Schweiger, M. Hiraoka, and D.T. Delpy, A
finite element approach for modeling photon transport in tissue, Med. Phys., 20 (1993), pp. 299–309.
CrossRef[8]
S.R. Arridge, P. Van Der Zee, D.T. Delpy, and M. Cope, Reconstruction methods for infra-red absorption imaging,in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance and A. Katzir, eds., vol. 1431, Proc. SPIE, 1991, pp. 204–215.
[9]
M.S. Bazaraa, H. D. Sherali, and C.M. Shetty, Nonlinear Programming: Theory and Algorithms, Wiley, second ed., 1993.
[10]
B. Chance, M. Maris, J. Sorge, and M.Z. Zhang, A phase modulation system for dual wavelength difference spectroscopy of haemoglobin deoxygenation in tissue,in Time-Resolved Laser Spectroscopy in Biochemistry II, J.R. Lakowicz, ed., vol. 1204, Proc. SPIE, 1990, pp. 481–491.
[11]
S.B. Colak, G.W. Hooft, D.G. Papaioannou, and M.B. Van Der Mark, 3D backprojection tomography for medical optical imaging, in Alfano and Fujimoto [1], pp. 294–298.
[12]
D.T. Delpy, M. Cope, P. Van Der Zee, S.R. Arridge, S. Wray, and J. Wyatt,
Estimation of optical pathlength through tissue from direct time of flight measurement, Phys. Med. Biol., 33 (1988), pp. 1433–1442.
CrossRef[13]
A.D. Edwards, J.S. Wyatt, C.E. Richardson, D.T. Delpy, M. Cope, and E.O.R. Reynolds,
Cotside measurement of cerebral blood flow in ill newborn infants by near infrared spectroscopy,Lancet, ii (1988), pp. 770–771.
CrossRef[14]
J.C. Hebden, S.R. Arridge, and D.T. Delpy,
Optical imaging in medicine: I. Experimental techniques, Phys. Med. Biol., 42 (1997), pp. 825–840.
CrossRef[15]
J.C. Hebden, R.A. Kruger, and K.S. Wong,
Time resolved imaging through a highly scattering medium, Appl. Opt., 30 (1991), pp. 788–794.
CrossRef[16]
D. Isaacson,
Distinguishability of conductivities by electric current computed tomography,IEEE Med. Im., 5 (1986), pp. 91–95.
CrossRef[17]
V. Isakov, Inverse Problems in Partial Differential Equations,Springer, New York, 1998.
[18]
H. Jiang, K.D. Paulsen, U.L. Osterberg, B.W. Pogue, and M.S. Patterson,
Optical image reconstruction using frequency-domain data: Simulations and experiments,J. Opt. Soc. Am. A, 13 (1995), pp. 253–266.
CrossRef[19]
M.V. Klibanov, T.R. Lucas, and R.M. Frank, A
fast and accurate imaging algorithm in optical diffusion tomography, Inverse Problems, 13 (1997), pp. 1341–1361.
MathSciNetMATHCrossRef[20]
D.W. Marquardt, An
algorithm for least-squares estimation of nonlinear parameters,J. SIAM, 11 (1963), pp. 431–441.
MathSciNetMATH[21]
R. Model, M. Orlt, M. Walzel, and R. Hunlich, Reconstruction algorithm for near-infrared imaging in turbid media by means of time-domain data, Appl. Opt., 14 (1997), pp. 313–324.
[22]
J.D. Moulton, Diffusion modelling of picosecond laser pulse propagation in turbid media, M. Eng. thesis, McMaster University, Hamilton, Ontario, 1990.
[23]
K. Mueller, R. Yagel, and F. Cornhill,
The weighted-distance scheme: A globally optimizing projection ordering method for ART, IEEE Med. Im., 16 (1997), pp. 223–230.
CrossRef[24]
F. Natterer, The Mathematics of Computerised Tomography, Wiley, New York, 1986.
[25]
F. Natterer and F. Wubbeling, A
propagation-backpropagation method for ultrasound tomography, Inverse Problems, 11 (1995), pp. 1225–1232.
MathSciNetMATHCrossRef[26]
M.A. O’Leary, D.A. Boas, B. Chance, and A.G. Yodh,
Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography, Opt. Lett., 20 (1995), pp. 426–428.
CrossRef[27]
K.D. Paulsen and H. Jiang,
Spatially-varying optical property reconstruction using a finite element diffusion equation approximation, Med. Phys., 22 (1995), pp. 691–701.
CrossRef[28]
K.D. Paulsen, P.M. Meaney, M.J. Moskowitz, and J.J.M. Sullivan, A dual mesh scheme for finite element based reconstruction algorithms, IEEE Med. Im., 14 (1995), pp. 504–514.
CrossRef[29]
PH. I. Trans, Royal Soc. B, Near-infrared spectroscopy and imaging of living systems,vol. 352, 1997.
[30]
B.W. Pogue, M.S. Patterson, H. Jiang, and K.D. Paulsen,
Initial assessment of a simple system for frequency domain diffuse optical tomography, Phys. Med. Biol., 40 (1995), pp. 1709–1729.
CrossRef[31]
S.S. Saquib, K.M. Hanson, and G.S. Cunningham, Model-based image reconstruction from time-resolved diffusion data, in Medical Imaging: Image Processing, K.M. Hanson, ed., Proc. SPIE, 3034 (1997), pp. 369–380.
[32]
M. Schweiger and S.R. Arridge,
Direct calculation of the Laplace transform of the distribution of photon time of flight in tissue with a finite-element method, Appl. Opt., 36 (1997), pp. 9042–9049.
CrossRef[33]
M. Schweiger and S.R. Arridge,
The finite element model for the propagation of light in scattering media: Frequency domain case, Med. Phys., 24 (1997), pp. 895–902.
CrossRef[34]
M. Schweiger, S.R. Arridge, and D.T. Delpy,
Application of the finite-element method for the forward and inverse models in optical tomography, J. Math. Imag. Vision, 3 (1993), pp. 263–283.
MATHCrossRef[35]
M. Schweiger, S.R. Arridge, M. Hiraoka, and D.T. Delpy,
The finite element model for the propagation of light in scattering media: Boundary and source conditions, Med. Phys., 22 (1995), pp. 1779–1792.
CrossRef[36]
M. Tamura, Multichannel near-infrared optical imaging of human brain activity,in Advances in Optical Imaging and Photon Migration, vol. 2, Proc. OSA, Proc. OSA, 1996, pp. 8–10.
[37]
S.A. Walker, S. Fantini, and E. Gratton, Back-projection reconstructions of cylindrical inhomogeneities from frequency domain optical measurements in turbid media, in Alfano and Fujimoto [1], pp. 137–141.
[38]
J.S. Wyatt, M. Cope, D.T. Delpy, C.E. Richardson, A.D. Edwards, S.C. Wray, and E.O.R. Reynolds, Quantitation of cerebral blood volume in newborn infants by near infrared spectroscopy, J. Appl. Physiol., 68 (1990), pp. 1086–1091.