2003, pp 331-342

Global optimization of climate control problems using evolutionary and stochastic algorithms

* Final gross prices may vary according to local VAT.

Get Access


Global optimization can be used as the main component for reliable decision support systems. In this contribution, we explore numerical solution techniques for nonconvex and nondifferentiable economic optimal growth models. As an illustrative example, we consider the optimal control problem of choosing the optimal greenhouse gas emissions abatement to avoid or delay abrupt and irreversible climate damages. We analyze a number of selected global optimization methods, including adaptive stochastic methods, evolutionary computation methods and deterministic/hybrid techniques.

Differential evolution (DE) and one type of evolution strategy (SRES) arrived to the best results in terms of objective function, with SRES showing the best convergence speed. Other simple adaptive stochastic techniques were faster than those methods in obtaining a local optimum close to the global solution, but mis-converged ultimately.