Skip to main content

A Review on Small Debye Length and Quasi-Neutral Limits in Macroscopic Models for Charged Fluids

  • Conference paper
Dispersive Transport Equations and Multiscale Models

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 136))

Abstract

We consider macroscopic models for charged fluids of drift-diffusion and of hydrodynamic type. In both cases we study the small Debye length limit on different time scales. In certain scalings we end up in the quasi-neutral regime. The limits are performed and the limit problems are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refrences

  1. F. Brezzi AND P.A. Markowich, A convection-diffusion problem with small diffusion coefficient arising in semiconductor physics, Bollettino UMI 7(2B): 903–930 (1988).

    MathSciNet  Google Scholar 

  2. S. Cordier AND E. Grenier, Quasineutral limit of Euler-Poisson systems arising from plasma physics, Preprint LAN, Université′ Paris 6, R96030 (1996).

    Google Scholar 

  3. S. Cordier, P. Degond, P.A. Markowich, AND C. Schmeiser, Quasineutral limit of travelling waves for the Euler-Poisson model, in Mathematical and numerical aspects of wave propagation, Gary (ed.) 1995, pp. 724–733.

    Google Scholar 

  4. Z. Deyl, Electrophoresis: A survey of techniques and applications, Elsevier, Amsterdam, 1979.

    Google Scholar 

  5. R. Diperna, Convergence of the viscosity method for isentropic gas dynamics, Commun. Math. Phys. 91: 1–30 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Gajewski, On existence, uniqueness and asymptotic behaviour of solutions of the basic equations for carrier transport in semiconductors, ZAMM 65: 101–108 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  7. H. Gajewski, On the uniqueness of solutions to the drift-diffusion model of semiconductor devices, Math. Models Methods Appl. Sci. 4: 121–133 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  8. I. Gasser, The initial time layer problem and the quasineutral limit in a nonlinear drift diffusion model for semiconductors, Nonlin. Diff. Eq. Appl. NoDEA 8(3): 237–249 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  9. I. Gasser, On the Relations between different macroscopic models for semiconductors, Habilitation thesis, Fachbereich Mathematik, Universität Hamburg, 2000.

    Google Scholar 

  10. I. Gasser, CD. Levermore, P.A. Markowich, AND C. Schmeiser, The initial time layer problem and the quasineutral limit in the drift diffusion model, Eur. J. Appl. Math 12(4): 497–512 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  11. I. Gasser, L. Hsiao, P.A. Markowich, AND S. Wang, Quasineutral limit in a nonlinear drift diffusion model for semiconductors, to appear in J. Math. Anal. Appl. (2002).

    Google Scholar 

  12. I. Gasser AND P. Marcati, The Combined Relaxation and Vanishing Debye Length Limit in the Hydrodynamic Model for Semiconductors, Math. Meth. in the Appl. Sci. M 2 AS, 24(2): 81–92 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  13. I. Gasser AND P. Marcati, On a generalization of the Div-Curl lemma, preprint (2000).

    Google Scholar 

  14. I. Gasser AND P. Marcati, A Quasineutral Limit in a Hydrodynamic Model for Charged Fluids, to appear in Monatshefte der Mathematik (2002).

    Google Scholar 

  15. A. Jülngel, Qualitative behavior of solutions of a degenerate nonlinear drift-diffusion model for semiconductors, Math. Models Methods Appl. Sci. 5(4): 497–518 (1995).

    Article  MathSciNet  Google Scholar 

  16. A. Jülngel AND Y.J. Peng, A hierarchy of hydrodynamic models for plasmas. Part II: zero-relaxation-time limits, Comm. Partial Differential Equations 24(5, 6): 1007–1033 (1999).

    MathSciNet  Google Scholar 

  17. A. Jülngel AND Y.J. Peng, A hierarchy of hydrodynamic models for plasmas. Quasineutral limits in the drift diffusion equations, submitted (2000).

    Google Scholar 

  18. S. Junca AND M. Rascle, Relaxation du système d’Euler-Poisson isotherme vers les équations de dérive-diffusion, to appear in Quart. Appl. Math. (2000).

    Google Scholar 

  19. C. Lattanzio, On the 3-D bipolar isentropic Euler-Poisson model for semiconductors and the drift-diffusion limit, to appear in Math. Models Methods Appl. Sci. (2000).

    Google Scholar 

  20. C. Lattanzio AND P. Marcati, The relaxation to the drift-diffusion system for the 3-D isentropic Euler-Poisson model for semiconductors, Discrete Contin. Dynam. Systems 5: 449–455 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  21. P.L. Lions, B. Perthame, AND P.E. Souganidis, Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates, Commun. Pure Appl. Math. 49(6): 599–638 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  22. P.L. Lions, B. Perthame, AND E. Tadmor, Kinetic formulation of the isentropic gas dynamics and p-systems, Commun. Math. Phys. 163(2): 415–431 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  23. P. Marcati AND R. Natalini, Weak solutions to a hydrodynamic model for semiconductors: the Cauchy problem, Proc. Royal Soc. Edinburgh 28: 115–131 (1995).

    Article  MathSciNet  Google Scholar 

  24. P. Marcati AND R. Natalini Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation, Arch. Rational Mech. Anal. 129: 129–145 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  25. P.A. Markowich, C. Ringhofer, AND C. Schmeiser, Semiconductors equations, Springer Verlag, Wien, New York, 1990.

    Book  Google Scholar 

  26. P.A. Markowich AND P. Szmolyan, A system of convection-diffusion equations with small diffusion coefficient arising in semiconductor physics, JDE 81: 234–254 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  27. R. Natalini, The bipolar hydrodynamic model for semiconductors and the drift-diffusion equations, J. of Math. Anal, and Appl. 198: 262–281 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  28. F. Poupaud, M. Raslce, AND J.P. Vila, Global solutions to the isothermal Euler-Poisson system with arbitrarily large data, J. Differ. Equations 123 (1): 93–121 (1995).

    Article  MATH  Google Scholar 

  29. C. Ringhofer, An asymptotic analysis of a transient p-n-junction model, SIAM J. Appl. Math. 47: 624–642 (1879).

    Article  MathSciNet  Google Scholar 

  30. A. Sitenko AND V. Malnev, Plasma physics theory, Chapman & Hall, London 1995.

    MATH  Google Scholar 

  31. P. Szmolyan, Asymptotic methods for transient semiconductor equations, COMPEL 8: 113–122 (1989).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this paper

Cite this paper

Gasser, I. (2004). A Review on Small Debye Length and Quasi-Neutral Limits in Macroscopic Models for Charged Fluids. In: Abdallah, N.B., et al. Dispersive Transport Equations and Multiscale Models. The IMA Volumes in Mathematics and its Applications, vol 136. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8935-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8935-2_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6473-6

  • Online ISBN: 978-1-4419-8935-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics