Skip to main content

Frontiers in Molecular Imaging of Cartilage: Future Developments

  • Chapter
  • First Online:
Book cover Cartilage Imaging

Abstract

Recent research has led to the development of drugs that, in animal models, have shown the potential of protecting against the breakdown of macromolecules in cartilage, effectively halting the progression of OA. Because of the long natural history of OA (10–20 years in humans), validating the efficacy of these drugs over the natural course of the disease is not feasible. Instead, what is needed is a validated noninvasive imaging biomarker that can directly assess their effect on molecular changes associated with early stages of cartilage degeneration that precede morphological changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liimatainen T, Sorce DJ, Connell R, Garwood M, Michacli S. MRI Contrast from relaxation along fictitious field (RAFF). Magn Reson Med. 2010;64: 983–994.

    PubMed  CAS  Google Scholar 

  2. Mosher TJ, Smith H, Dardzinski BJ, Schmithorst VJ, Smith MB. MR imaging and T2 mapping of femoral cartilage: in vivo determination of the magic angle effect. AJR Am J Roentgenol. 2001;177(3):665–9.

    PubMed  CAS  Google Scholar 

  3. Smith HE, Mosher TJ, Dardzinski BJ, Collins BG, Collins CM, Yang QX, et al. Spatial variation in cartilage T2 of the knee. J Magn Reson Imaging. 2001;14(1):50–5.

    PubMed  Google Scholar 

  4. Dardzinski BJ, Mosher TJ, Li S, Van Slyke MA, Smith MB. Spatial variation of T2 in human articular cartilage. Radiology. 1997;205(2):546–50.

    PubMed  CAS  Google Scholar 

  5. David-Vaudey E, Ghosh S, Ries M, Majumdar S. T2 relaxation time measurements in osteoarthritis. Magn Reson Imaging. 2004;22(5):673–82.

    PubMed  Google Scholar 

  6. Glaser C. New techniques for cartilage imaging: T2 relaxation time and diffusion-weighted MR imaging. Radiol Clin North Am. 2005;43(4):641–53. vii.

    PubMed  Google Scholar 

  7. Mosher TJ, Dardzinski BJ. Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol. 2004;8(4):355–68.

    PubMed  Google Scholar 

  8. Mosher TJ, Smith HE, Collins C, Liu Y, Hancy J, Dardzinski BJ, et al. Change in knee cartilage T2 at MR imaging after running: a feasibility study. Radiology. 2005;234(1):245–9.

    PubMed  Google Scholar 

  9. Van Breuseghem I, Bosmans HT, Elst LV, Maes F, Pans SD, Brys PP, et al. T2 mapping of human femorotibial cartilage with turbo mixed MR imaging at 1.5 T: feasibility. Radiology. 2004;233(2):609–14.

    PubMed  Google Scholar 

  10. Dunn TC, Lu Y, Jin H, Ries MD, Majumdar S. T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. Radiology. 2004;232(2):592–8.

    PubMed  Google Scholar 

  11. Nieminen MT, Menezes NM, Williams A, Burstein D. T2 of articular cartilage in the presence of Gd-DTPA2. Magn Reson Med. 2004;51(6):1147–52.

    PubMed  Google Scholar 

  12. Nieminen MT, Rieppo J, Toyras J, Hakumaki JM, Silvennoinen J, Hyttinen MM, et al. T2 relaxation reveals spatial collagen architecture in articular cartilage: a comparative quantitative MRI and polarized light microscopic study. Magn Reson Med. 2001;46(3):487–93.

    PubMed  CAS  Google Scholar 

  13. Van Breuseghem I, Palmieri F, Peeters RR, Maes F, Bosmans HT, Marchal GJ. Combined T1-T2 mapping of human femoro-tibial cartilage with turbo-mixed imaging at 1.5T. J Magn Reson Imaging. 2005;22(3):368–72.

    PubMed  Google Scholar 

  14. Watrin-Pinzano A, Ruaud JP, Olivier P, Grossin L, Gonord P, Blum A, et al. Effect of proteoglycan depletion on T2 mapping in rat patellar cartilage. Radiology. 2005;234(1):162–70.

    PubMed  Google Scholar 

  15. Burstein D, Velyvis J, Scott KT, Stock KW, Kim YJ, Jaramillo D, et al. Protocol issues for delayed Gd(DTPA)2–enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med. 2001;45(1):36–41.

    PubMed  CAS  Google Scholar 

  16. Bashir A, Gray ML, Boutin RD, Burstein D. Glycosaminoglycan in articular cartilage: in vivo assessment with delayed Gd(DTPA)(2-)-enhanced MR imaging. Radiology. 1997;205(2):551–8.

    PubMed  CAS  Google Scholar 

  17. Bashir A, Gray ML, Burstein D. Gd-DTPA2− as a measure of cartilage degradation. Magn Reson Med. 1996;36(5):665–73.

    PubMed  CAS  Google Scholar 

  18. Duvvuri U, Charagundla SR, Kudchodkar SB, Kaufman JH, Kneeland JB, Rizi R, et al. Human knee: in vivo T1(rho)-weighted MR imaging at 1.5 T–preliminary experience. Radiology. 2001;220(3):822–6.

    PubMed  CAS  Google Scholar 

  19. Duvvuri U, Reddy R, Patel SD, Kaufman JH, Kneeland JB, Leigh JS. T1r-relaxation in articular cartilage: effects of enzymatic degradation. Magn Reson Med. 1997;38(6):863–7.

    PubMed  CAS  Google Scholar 

  20. Regatte RR, Akella SV, Borthakur A, Kneeland JB, Reddy R. Proteoglycan depletion-induced changes in transverse relaxation maps of cartilage: comparison of T2 and T1rho. Acad Radiol. 2002;9(12):1388–94.

    PubMed  Google Scholar 

  21. Akella SV, Regatte RR, Gougoutas AJ, Borthakur A, Shapiro EM, Kneeland JB, et al. Proteoglycan-induced changes in T1rho-relaxation of articular cartilage at 4T. Magn Reson Med. 2001;46(3):419–23.

    PubMed  CAS  Google Scholar 

  22. Reddy R, Insko EK, Kaufman JH, Bolinger L, Kneeland JB, Leigh JS. MR imaging of cartilage under spin-locking. Proceedings of the International Society of Magnetic Resonance, 3rd Scientific Meeting. Nice, France; 1995, p. 1535.

    Google Scholar 

  23. Ling W, Regatte RR, Navon G, Jerschow A. Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc Natl Acad Sci USA. 2008;105(7):2266–70.

    PubMed  CAS  Google Scholar 

  24. Reddy R, Insko EK, Noyszewski EA, Dandora R, Kneeland JB, Leigh JS. Sodium MRI of human articular cartilage in vivo. Magn Reson Med. 1998;39(5):697–701.

    PubMed  CAS  Google Scholar 

  25. Borthakur A. Sodium NMR: an noninvasive probe for proteoglycan macromolecules. Philadelphia, PA: University of Pennsylvania; 2000. p. 104.

    Google Scholar 

  26. Reddy R, Shuchun L, Noyszewski EA, Kneeland JB, Leigh JSf. In vivo sodium multiple quantum spectroscopy of human articular cartilage. Magn Reson Med. 1997;38(2):207.

    PubMed  CAS  Google Scholar 

  27. Shapiro E. Multi-nuclear magnetic resonance methods for evaluating cartilage degeneration. Philadelphia, PA: University of Pennsylvania; 2001. p. 139.

    Google Scholar 

  28. Wheaton AJ, Borthakur A, Shapiro EM, Regatte RR, Akella SV, Kneeland JB, et al. Proteoglycan loss in human knee cartilage: quantitation with sodium MR Imaging–Feasibility Study. Radiology. 2004;231(3):900–5.

    PubMed  Google Scholar 

  29. Burstein D, Gray M. New MRI techniques for imaging cartilage. J Bone Joint Surg Am. 2003;85-A Suppl 2:70–7.

    PubMed  Google Scholar 

  30. Goodwin DW, Dunn JF. MR imaging and T2 mapping of femoral cartilage. AJR Am J Roentgenol 2002;178(6):1568–69; author reply 1569–70.

    Google Scholar 

  31. Gray ML, Burstein D. Molecular (and functional) imaging of articular cartilage. J Musculoskelet Neuronal Interact. 2004;4(4):365–8.

    PubMed  CAS  Google Scholar 

  32. Gray ML, Eckstein F, Peterfy C, Dahlberg L, Kim YJ, Sorensen AG. Toward imaging biomarkers for osteoarthritis. Clin Orthop Relat Res. 2004(427 Suppl):S175–81.

    Google Scholar 

  33. Gatehouse PD, Thomas RW, Robson MD, Hamilton G, Herlihy AH, Bydder GM. Magnetic resonance imaging of the knee with ultrashort TE pulse sequences. Magn Reson Imaging. 2004;22(8):1061–7.

    PubMed  Google Scholar 

  34. Gold GE, Hargreaves BA, Reeder SB, Vasanawala SS, Beaulieu CF. Controversies in protocol selection in the imaging of articular cartilage. Semin Musculoskelet Radiol. 2005;9(2):161–72.

    PubMed  Google Scholar 

  35. Gold GE, McCauley TR, Gray ML, Disler DG. What’s new in cartilage? Radiographics. 2003;23(5):1227–42.

    PubMed  Google Scholar 

  36. Hall LD. Magnetic resonance imaging as a noninvasive means for quantitating the dimensions of articular cartilage in the human knee. Arthritis Rheum. 2004;50(1):5–9.

    PubMed  Google Scholar 

  37. Lang P, Noorbakhsh F, Yoshioka H. MR imaging of articular cartilage: current state and recent developments. Radiol Clin North Am. 2005;43(4):629–39. Vii.

    PubMed  Google Scholar 

  38. Manaster BJ, Johnson T, Narahari U. Imaging of cartilage in the athlete. Clin Sports Med. 2005;24(1):13–37.

    PubMed  CAS  Google Scholar 

  39. Nishimura K. Magnetic resonance imaging in rheumatoid arthritis. Nippon Rinsho. 2005;63 Suppl 1:405–9.

    PubMed  Google Scholar 

  40. O’Byrne E, Pellas T, Laurent D. Qualitative and quantitative in vivo assessment of articular cartilage using magnetic resonance imaging. Novartis Found Symp. 2003;249:190–8. discussion 198–202, 234–198, 239–141.

    PubMed  Google Scholar 

  41. Peterfy CG. Imaging of the disease process. Curr Opin Rheumatol. 2002;14(5):590–6.

    PubMed  Google Scholar 

  42. Potter HG, Ho ST, Altchek DW. Magnetic resonance imaging of the elbow. Semin Musculoskelet Radiol. 2004;8(1):5–16.

    PubMed  Google Scholar 

  43. Raynauld JP. Quantitative magnetic resonance imaging of articular cartilage in knee osteoarthritis. Curr Opin Rheumatol. 2003;15(5):647–50.

    PubMed  Google Scholar 

  44. Recht MP, Goodwin DW, Winalski CS, White LM. MRI of articular cartilage: revisiting current status and future directions. AJR Am J Roentgenol. 2005;185(4):899–914.

    PubMed  Google Scholar 

  45. Schmitt F, Grosu D, Mohr C, Purdy D, Salem K, Scott KT, et al. 3 Tesla MRI: successful results with higher field strengths. Radiologe. 2004;44(1):31–47.

    PubMed  CAS  Google Scholar 

  46. Trattnig S, Plank C, Pinker K, Striessnig G, Mlynarik V, Nobauer I, et al. Diagnostic imaging of cartilage replacement therapy. Radiologe. 2004;44(8):748–55.

    PubMed  CAS  Google Scholar 

  47. Tsou IY, Yegappan M, Ong WS, Goh PO, Tan JL, Chee TS. Cartilage injury and repair: assessment with magnetic resonance imaging. Singapore Med J. 2006;47(1):80–7. quiz 88.

    PubMed  CAS  Google Scholar 

  48. Van Breuseghem I. Ultrastructural MR imaging techniques of the knee articular cartilage: problems for routine clinical application. Eur Radiol. 2004;14(2):184–92.

    PubMed  Google Scholar 

  49. Verstraete KL, Almqvist F, Verdonk P, Vanderschueren G, Huysse W, Verdonk R, et al. Magnetic resonance imaging of cartilage and cartilage repair. Clin Radiol. 2004;59(8):674–89.

    PubMed  CAS  Google Scholar 

  50. Winalski CS, Gupta KB. Magnetic resonance imaging of focal articular cartilage lesions. Top Magn Reson Imaging. 2003;14(2):131–44.

    PubMed  Google Scholar 

  51. Young IR, Bydder GM. Magnetic resonance: new approaches to imaging of the musculoskeletal system. Physiol Meas. 2003;24(4):R1–23.

    PubMed  Google Scholar 

  52. Slichter CP. Principles of magnetic resonance. Berlin; New York: Springer; 1996. xi, 655 p.

    Google Scholar 

  53. Jaccard G, Wimperis S, Bodenhausen G. Multiple quantum NMR spectroscopy of S =3/2 spins in isotropic phase: a new probe for multiexponential relaxation. J Chem Phys. 1986;85(11):6282–93.

    CAS  Google Scholar 

  54. Johan RCvdM. Thermal relaxation and coherence dynamics of spin 3/2. I. Static and fluctuating quadrupolar interactions in the multipole basis. Concepts in Magnetic Resonance Part A. 2003;19A(2):97–116.

    Google Scholar 

  55. Van Der Maarel JRC. Relaxation of spin 3/2 in a nonzero average electric field gradient. Chem Phys Lett. 1989;155(3):288.

    Google Scholar 

  56. Maroudas A, Muir H, Wingham J. The correlation of fixed negative charge with glycosaminoglycan content of human articular cartilage. Biochim Biophys Acta. 1969;177(3):492–500.

    PubMed  CAS  Google Scholar 

  57. Lesperance LM, Gray ML, Burstein D. Determination of fixed charge-density in cartilage using nuclear-magnetic-resonance. J Orthop Res. 1992;10(1):1–13.

    PubMed  CAS  Google Scholar 

  58. Granot J. Sodium imaging of human body organs and extremities in vivo. Radiology. 1988;167:547–50.

    PubMed  CAS  Google Scholar 

  59. Shapiro EM, Borthakur A, Dandora R, Kriss A, Leigh JS, Reddy R. Sodium visibility and quantitation in intact bovine articular cartilage using high field 23Na MRI and MRS. J Magn Reson. 2000;142(1):24–31.

    PubMed  CAS  Google Scholar 

  60. Shapiro EM, Borthakur A, Gougoutas A, Reddy R. 23Na MRI accurately measures FCD in articular cartilage. Magn Reson Med. 2002;47(2):284–91.

    PubMed  Google Scholar 

  61. Wheaton AJ, Casey FL, Gougoutas AJ, Dodge GR, Borthakur A, Lonner JH, et al. Correlation of T1rho with fixed charge density in cartilage. J Magn Reson Imaging. 2004;20(3):519–25.

    PubMed  Google Scholar 

  62. Staroswiecki E, Bangerter NK, Gurney PT, Grafendorfer T, Gold GE, Hargreaves BA. In vivo sodium imaging of human patellar cartilage with a 3D cones sequence at 3 T and 7 T. J Magn Reson Imaging. 2010;32(2):446–51.

    PubMed  Google Scholar 

  63. Wheaton AJ, Borthakur A, Dodge GR, Kneeland JB, Schumacher HR, Reddy R. Sodium magnetic resonance imaging of proteoglycan depletion in an in vivo model of osteoarthritis. Acad Radiol. 2004;11(1):21–8.

    PubMed  Google Scholar 

  64. Madelin G, Lee JS, Inati S, Jerschow A, Regatte RR. Sodium inversion recovery MRI of the knee joint in vivo at 7T. J Magn Reson. 2010;494(4–6):331–6.

    Google Scholar 

  65. Wang L, Wu Y, Chang G, Oesingmann N, Schweitzer ME, Jerschow A, et al. Rapid isotropic 3D-sodium MRI of the knee joint in vivo at 7T. J Magn Reson Imaging. 2009;30(3):606–14.

    PubMed  Google Scholar 

  66. Borthakur A, Hancu I, Boada FE, Shen GX, Shapiro EM, Reddy R. In vivo triple quantum filtered twisted projection sodium MRI of human articular cartilage. J Magn Reson. 1999;146:286–90.

    Google Scholar 

  67. Chen CN, Sank VJ, Cohen SM, Hoult DI. The field dependence of NMR imaging. I. Laboratory assessment of signal-to-noise ratio and power deposition. Magn Reson Med. 1986;3(5):722–9.

    PubMed  CAS  Google Scholar 

  68. Wen H, Chesnick AS, Balaban RS. The design and test of a new volume coil for high field imaging. Magn Reson Med. 1994;32(4):492–8.

    PubMed  CAS  Google Scholar 

  69. Ugurbil K, Adriany G, Andersen P, Chen W, Garwood M, Gruetter R, et al. Ultrahigh field magnetic resonance imaging and spectroscopy. Magn Reson Imaging. 2003;21(10):1263–81.

    PubMed  Google Scholar 

  70. Koenig SH, Brown III RD. Field-cycling relaxometry of protein solutions and tissues: implications for MRI. Prog NMR Spectrosc. 1990;22:487–567.

    CAS  Google Scholar 

  71. Rommel E, Kimmich R, Korperich H, Kunze C, Gersonde K, et al. T1r dispersion imaging and localized T1r dispersion relaxometry: applications in vivo to mouse adenocarcinoma. Magn Reson Med. 1992;24:149–57.

    PubMed  CAS  Google Scholar 

  72. Santyr GE, Fairbanks EJ, Kelcz F, Sorenson JA. Off-resonance spin locking for MR imaging. Magn Reson Med. 1994;32(1):43–51.

    PubMed  CAS  Google Scholar 

  73. Charagundla SR, Stolpen AH, Leigh JS, Reddy R. Off-resonance proton T1r dispersion imaging of 17O-enriched tissue phantoms. Magn Reson Med. 1998;39(4):588–95.

    PubMed  CAS  Google Scholar 

  74. Redfield AG. Nuclear magnetic resonance saturation and rotary saturation in solids. Phys Rev. 1955;98(6):1787.

    CAS  Google Scholar 

  75. Redfield AG. Nuclear spin thermodynamics in the rotating frame. Science. 1969;164(3883):1015.

    PubMed  CAS  Google Scholar 

  76. Bull TE. Relaxation in the rotating frame in liquids. Prog Nucl Magn Reson Spectrosc. 1992;24:377.

    CAS  Google Scholar 

  77. Knispel RR. NMR study of the two-phase equilibrium in cysteine hydrochloride monohydrate. II. J Chem Phys. 1974;61(3):1125.

    CAS  Google Scholar 

  78. Wheaton AJ, Dodge GR, Borthakur A, Kneeland JB, Schumacher HR, Reddy R. Detection of changes in articular cartilage proteoglycan by T(1rho) magnetic resonance imaging. J Orthop Res. 2005;23(1):102–8.

    PubMed  CAS  Google Scholar 

  79. Wheaton AJ, Dodge GR, Elliott DM, Nicoll SB, Reddy R. Quantification of cartilage biomechanical and biochemical properties via T1rho magnetic resonance imaging. Magn Reson Med. 2005;54(5):1087–93.

    PubMed  CAS  Google Scholar 

  80. Mlynarik V, Trattnig S, Huber M, Zembsch A, Imhof H. The role of relaxation times in monitoring proteoglycan depletion in articular cartilage. J Magn Reson Imag. 1999;10(4):497–502.

    CAS  Google Scholar 

  81. Menezes NM, Gray ML, Hartke JR, Burstein D. T2 and T1rho MRI in articular cartilage systems. Magn Reson Med. 2004;51(3):503–9.

    PubMed  CAS  Google Scholar 

  82. Regatte RR, Akella SV, Borthakur A, Kneeland JB, Reddy R. In vivo proton MR three-dimensional T1rho mapping of human articular cartilage: initial experience. Radiology. 2003;229(1):269–74.

    PubMed  Google Scholar 

  83. Regatte RR, Akella SV, Wheaton AJ, Lech G, Borthakur A, Kneeland JB, et al. 3D-T1rho-relaxation mapping of articular cartilage: in vivo assessment of early degenerative changes in symptomatic osteoarthritic subjects. Acad Radiol. 2004;11(7):741–9.

    PubMed  Google Scholar 

  84. Li X, Han ET, Ma CB, Link TM, Newitt DC, Majumdar S. In vivo 3T spiral imaging based multi-slice T(1rho) mapping of knee cartilage in osteoarthritis. Magn Reson Med. 2005;54(4):929–36.

    PubMed  Google Scholar 

  85. Witschey WR, Borthakur A, Fenty M, Kneeland BJ, Lonner JH, McArdle EL, et al. T1rho MRI quantification of arthroscopically confirmed cartilage degeneration. Magn Reson Med. 2010;63(5):1376–82.

    PubMed  Google Scholar 

  86. Lozano J, Li X, Link TM, Safran M, Majumdar S, Ma CB. Detection of posttraumatic cartilage injury using quantitative T1rho magnetic resonance imaging. A report of two cases with arthroscopic findings. J Bone Joint Surg Am. 2006;88(6):1349–52.

    PubMed  Google Scholar 

  87. Stahl R, Luke A, Li X, Carballido-Gamio J, Ma CB, Majumdar S, et al. T1rho, T2 and focal knee cartilage abnormalities in physically active and sedentary healthy subjects versus early OA patients–a 3.0-Tesla MRI study. Eur Radiol. 2009;19(1):132–43.

    PubMed  Google Scholar 

  88. Li X, Ma CB, Link TM, Castillo DD, Blumenkrantz G, Lozano J, et al. In vivo T(1rho) and T(2) mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI. Osteoarthritis Cartilage. 2007;15(7):789–97.

    PubMed  CAS  Google Scholar 

  89. Bolbos RI, Link TM, Ma CB, Majumdar S, Li X. T1rho relaxation time of the meniscus and its relationship with T1rho of adjacent cartilage in knees with acute ACL injuries at 3 T. Osteoarthritis Cartilage. 2009;17(1):12–8.

    PubMed  CAS  Google Scholar 

  90. Bolbos RI, Ma CB, Link TM, Majumdar S, Li X. In vivo T1rho quantitative assessment of knee cartilage after anterior cruciate ligament injury using 3 Tesla magnetic resonance imaging. Invest Radiol. 2008;43(11):782–8.

    PubMed  Google Scholar 

  91. Taylor C, Carballido-Gamio J, Majumdar S, Li X. Comparison of quantitative imaging of cartilage for osteoarthritis: T2, T1rho, dGEMRIC and contrast-enhanced computed tomography. Magn Reson Imaging. 2009;27(6):779–84.

    PubMed  Google Scholar 

  92. Aronen HJ, Ramadan UA, Peltonen TK, Markkola AT, Tanttu JI, Jaaskelainen J, et al. 3D spin-lock imaging of human gliomas. Magn Reson Imaging. 1999;17(7):1001–10.

    PubMed  CAS  Google Scholar 

  93. Borthakur A, Wheaton AJ, Charagundla SR, Shapiro EM, Regatte RR, Akella SVS, et al. Three-dimensional T1r-weighted MRI at 1.5 Tesla. J Magn Reson Imaging. 2003;17:730–6.

    PubMed  Google Scholar 

  94. Wheaton AJ, Borthakur A, Charagundla SR, Reddy R. Pulse sequence for multislice T1rho-weighted MRI. Magn Reson Med. 2004;51(2):362–9.

    PubMed  Google Scholar 

  95. Wheaton AJ. Quantitative spin-lock magnetic resonance imaging: technical development and biomedical applications. Philadelphia, PA: University of Pennsylvania; 2005. p. 188.

    Google Scholar 

  96. Borthakur A, Hulvershorn J, Gualtieri E, Wheaton AJ, Charagundla S, Elliott MA, et al. A pulse sequence for rapid in vivo spin-locked MRI. J Magn Reson Imaging. 2006;23(4):591–6.

    PubMed  Google Scholar 

  97. Schmitz B, Hagen T, Reith W. Three-dimensional true FISP for high-resolution imaging of the whole brain. Eur Radiol. 2003;13(7):1577–82.

    PubMed  CAS  Google Scholar 

  98. Witschey WR, Borthakur A, Elliott MA, Fenty M, Sochor MA, Wang C, et al. T1rho-prepared balanced gradient echo for rapid 3D T1rho MRI. J Magn Reson Imaging. 2008;28(3):744–54.

    PubMed  Google Scholar 

  99. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42(5):952–62.

    PubMed  CAS  Google Scholar 

  100. Trott O, Palmer III AG. R1rho relaxation outside of the fast-exchange limit. J Magn Reson. 2002;154(1):157.

    PubMed  CAS  Google Scholar 

  101. Mlynarik V, Szomolanyi P, Toffanin R, Vittur F, Trattnig S. Transverse relaxation mechanisms in articular cartilage. J Magn Reson. 2004;169(2):300–7.

    PubMed  CAS  Google Scholar 

  102. Wheaton AJ, Borthakur A, Reddy R. Application of the keyhole technique to T1rho relaxation mapping. J Magn Reson Imag. 2003;18(6):745–9.

    Google Scholar 

  103. Witschey WR, Borthakur A, Elliott MA, Magland J, McArdle EL, Wheaton A, et al. Spin-locked balanced steady-state free-precession (slSSFP). Magn Reson Med. 2009;62(4):993–1001.

    PubMed  Google Scholar 

  104. Forsen S, Hoffman RA. Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance. J Chem Phys. 1963;39(11):2892–901.

    CAS  Google Scholar 

  105. Sherry AD, Woods M. Chemical exchange saturation transfer contrast agents for magnetic resonance imaging. Annu Rev Biomed Eng. 2008;10:391–411.

    PubMed  CAS  Google Scholar 

  106. Ward KM, Aletras AH, Balaban RS. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson. 2000;143(1):79–87.

    PubMed  CAS  Google Scholar 

  107. Zhou J, van Zijl PC. Chemcial exchange saturation transfer imaging and spectroscopy. Prog NMR Spectrosc. 2006;48:109–36.

    CAS  Google Scholar 

  108. Woessner DE, Zhang S, Merritt ME, Sherry AD. Numerical solution of the Bloch equations provides insights into the optimum design of PARACEST agents for MRI. Magn Reson Med. 2005;53(4):790–9.

    PubMed  CAS  Google Scholar 

  109. van Zijl PC, Jones CK, Ren J, Malloy CR, Sherry AD. MRI detection of glycogen in vivo by using chemical exchange saturation transfer imaging (glycoCEST). Proc Natl Acad Sci USA. 2007;104(11):4359–64.

    PubMed  Google Scholar 

  110. Zhou J, Wilson DA, Sun PZ, Klaus JA, Van Zijl PC. Quantitative description of proton exchange processes between water and endogenous and exogenous agents for WEX, CEST, and APT experiments. Magn Reson Med. 2004;51(5):945–52.

    PubMed  Google Scholar 

  111. Borthakur A, Mellon E, Niyogi S, Witschey W, Kneeland JB, Reddy R. Sodium and T1rho MRI for molecular and diagnostic imaging of articular cartilage. NMR Biomed. 2006;19(7):781–821.

    PubMed  CAS  Google Scholar 

  112. McRobbie DW. MRI from picture to proton. Cambridge, UK; New York: Cambridge University Press; 2007. xii, 397 p.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravinder Reddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Reddy, R., Borthakur, A., Witschey, W.R.T., Kneeland, J.B. (2011). Frontiers in Molecular Imaging of Cartilage: Future Developments. In: Link, T. (eds) Cartilage Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8438-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8438-8_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8437-1

  • Online ISBN: 978-1-4419-8438-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics