Skip to main content

Effects of Protein Quality Control Machinery on Protein Homeostasis

  • Chapter
  • First Online:
Book cover Understanding the Dynamics of Biological Systems

Abstract

In the endoplasmic reticulum, protein production occurs through a complex set of reaction networks which synthesize and fold protein polypeptides. Proteins can misfold due to mutation or cellular stress. Accumulation of misfolded proteins can lead to the formation of toxic protein aggregates. Cells have evolved the unfolded protein response which removes misfolded proteins from the endoplasmic reticulum before aggregation can occur. Failure of protein synthesis and folding quality control is associated with disease. We are beginning to comprehend how these processes are controlled. Here, we develop two mathematical models to investigate how cellular quality control regulates protein homeostasis. Using parametric sensitivity analysis, we identify pathway parameters involved in increasing folded protein production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular biology of the cell, 5th edition. Garland Science, San Francisco, 2008

    Google Scholar 

  2. B. B. Aldridge, J. M. Burke, D. A. Lauffenburger, and P. K. Sorger. Physicochemical modeling of cell signalling pathways. Nature Cell Biology, 8:1195–1203, 2006

    Article  PubMed  CAS  Google Scholar 

  3. C. B. Anfinsen, R. R. Redfield, W. L. Choate, J. Page, and W. R. Carroll. Studies on the gross structure, cross-linkages, and terminal sequences in ribonuclease. Journal of Biological Chemistry, 207:201–210, 1954

    PubMed  CAS  Google Scholar 

  4. J. L. Brodsky. The protective and destructive roles played by molecular chaperones during ERAD (endoplasmic-reticulum-associated degradation). Biochemical Journal, 404:353–363, 2007

    Article  PubMed  CAS  Google Scholar 

  5. F. Chiti and C. M. Dobson. Protein misfolding, functional amyloid, and human disease. Annual Review of Biochemistry, 75:333–366, 2006

    Article  PubMed  CAS  Google Scholar 

  6. F. Crick. Central dogma of molecular biology. Nature, 227:561–563, 1970

    Article  PubMed  CAS  Google Scholar 

  7. C. M. Dobson. Experimental investigation of protein folding and misfolding. Methods, 34: 4–14, 2004

    Article  PubMed  CAS  Google Scholar 

  8. H. P. Harding, Y. Zhang, and D. Ron. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature, 397:271–274, 1999

    Article  PubMed  CAS  Google Scholar 

  9. R. J. Kaufman. Regulation of mRNA translation by protein folding in the endoplasmic reticulum. Trends in Biochemical Sciences, 29:152–158, 2004

    Article  PubMed  CAS  Google Scholar 

  10. B. N. Kholodenko. Cell-signalling dynamics in time and space. Nature Reviews Molecular Cell Biology, 7:165–176, 2006

    Article  PubMed  CAS  Google Scholar 

  11. K. Liberek, A. Lewandowska, and S. Zietkiewicz. Chaperones in control of protein disaggregation. The EMBO Journal, 27:328–335, 2008

    Article  PubMed  CAS  Google Scholar 

  12. J. Martin and F. U. Hartl. Chaperone-assisted protein folding. Current Opinion in Structural Biology, 7:41–52, 1997

    Article  PubMed  CAS  Google Scholar 

  13. B. Meusser, C. Hirsch, E. Jarosch, and T. Sommer. ERAD: the long road to destruction. Nature Cell Biology, 7:766–772, 2005

    Article  PubMed  CAS  Google Scholar 

  14. R. I. Morimoto. Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes and Development, 22:1427–1438, 2008

    Article  PubMed  CAS  Google Scholar 

  15. K. Nakatsukasa and J. L. Brodsky. The recognition and retrotranslocation of misfolded proteins from the endoplasmic reticulum. Traffic, 9:861–870, 2008

    Article  PubMed  CAS  Google Scholar 

  16. B. Nolting. Protein folding kinetics – Biophysical methods (2nd edition). Springer, Berlin, 2006

    Google Scholar 

  17. D. Ron and P. Walter. Signal integration in the endoplasmic reticulum unfolded protein response. Nature Reviews Molecular Cell Biology, 8:519–529, 2007

    Article  PubMed  CAS  Google Scholar 

  18. D. Scheuner and R. J. Kaufman. The unfolded protein response: a pathway that links insulin demand with β-cell failure and diabetes. Endocrine Reviews, 29:317–333, 2008

    Article  PubMed  CAS  Google Scholar 

  19. S. Schnell. A model of the unfolded protein response: pancreatic β-cell as a case study. Cellular Physiology and Biochemistry, 23:233–244, 2009

    Article  PubMed  CAS  Google Scholar 

  20. L. A. Segel. Modeling dynamic phenomena in molecular and cellular biology. Cambridge University Press, Cambridge, 1984

    Google Scholar 

  21. L. A. Segel. Simplification and scaling. SIAM Review, 14:547–571, 1972

    Article  Google Scholar 

  22. L. A. Segel and M. Slemrod. The quasi-steady-state assumption: a case study in perturbation. SIAM Review, 31:446–477, 1989

    Article  Google Scholar 

  23. C. Soto. Unfolding the role of protein misfolding in neurodegenerative diseases. Nature Reviews Neuroscience, 4:49–60, 2003

    Article  PubMed  CAS  Google Scholar 

  24. A. Varma, M. Morbidelli, and H. Wu. Parametric sensitivity in chemical systems. Cambridge University Press, Cambridge, 1999

    Book  Google Scholar 

  25. R. L. Wiseman, E. T. Powers, J. N. Buxbaum, J. W. Kelly, and W. E. Balch. An adaptable standard for protein export from the endoplasmic reticulum. Cell, 131: 809–821, 2007

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the comments from Marnie Briceno (University of Washington), Hannah Briolat (University of Michigan), and Michelle Wynn (University of Michigan). This work is based upon research supported by the National Science Foundation under Grant No. IIS-0852734.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conner I. Sandefur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sandefur, C.I., Schnell, S. (2011). Effects of Protein Quality Control Machinery on Protein Homeostasis. In: Dubitzky, W., Southgate, J., Fuß, H. (eds) Understanding the Dynamics of Biological Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7964-3_1

Download citation

Publish with us

Policies and ethics