Skip to main content

Principles of Combining ISCO with Other In Situ Remedial Approaches

  • Chapter
  • First Online:
In Situ Chemical Oxidation for Groundwater Remediation

Part of the book series: SERDP/ESTCP Environmental Remediation Technology ((SERDP/ESTCP,volume 3))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Personal communication with M.A. Singletary, Naval Facilities Southeast, Jacksonville, FL, September 25, 2009.

References

  • Adam ML, Comfort SD, Zhang TC, Morley MC. 2005. Evaluating biodegradation as a primary and secondary treatment for removing RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) from a perched aquifer. Bioremediat J 9:9–19.

    Article  CAS  Google Scholar 

  • Ahn Y, Jung H, Tatavarty R, Choi H, Yang J-W, Kim IS. 2005. Monitoring of petroleum hydrocarbon degradative potential of indigenous microorganisms in ozonated soil. Biodegradation 16:45–56.

    Article  CAS  Google Scholar 

  • Almendros G, Gonzalez-Vila FJ, Martin F. 1989. Room temperature alkaline permanganate oxidation of representative humic acids. Soil Biol Biochem 21:481–486.

    Article  CAS  Google Scholar 

  • Anipsitakis GP, Dionysiou DD. 2004. Radical generation by the interaction of transition metals with common oxidants. Environ Sci Technol 38:3705–3712.

    Article  CAS  Google Scholar 

  • Arndt D. 1981. Manganese Compounds as Oxidizing Agents in Organic Chemistry. Open Court Publishing Co., La Salle, IL, USA. 344 p.

    Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry). 1994. Toxicological Profile for Acetone. U.S. Department of Health and Human Services ATSDR, Atlanta, GA, USA. 276 p.

    Google Scholar 

  • Azadpour-Keeley A, Wood LA, Lee TR, Mravik SC. 2004. Microbial responses to in situ chemical oxidation, six-phase heating, and steam injection remediation technologies in groundwater. Remediation 14:5–17.

    Article  Google Scholar 

  • Bittkau A, Geyer R, Bhatt M, Schlosser D. 2004. Enhancement of the biodegradability of aromatic groundwater contaminants. Toxicology 205:201–210.

    Article  CAS  Google Scholar 

  • Block PA, Brown RA, Robinson D. 2004. Novel Activation Technologies for Sodium Persulfate In Situ Chemical Oxidation. Proceedings, Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 24–27, Paper 2A-05.

    Google Scholar 

  • Bradley PM, Landmeyer JE, Dinicola RS. 1998. Anaerobic oxidation of [1,2-14C] dichloroethene under Mn (IV)-reducing conditions. Appl Environ Microbiol 64:1560–1562.

    CAS  Google Scholar 

  • Bradley PM, Singletary MA, Chapelle FH. 2007. Chloroethene dechlorination in acidic groundwater: Implications for combining Fenton’s treatment with natural attenuation. Remediat J 18:7–19.

    Article  Google Scholar 

  • Brioukhanov AL, Thauer RK, Netrusov AI. 2002. Catalase and superoxide dismutase in the cells of strictly anaerobic microorganisms. “Microbiology (Russia)”; the original Russian publication is Mikrobiologiya, Vol. 71, No. 3, 2002, pp. 330–335.

    CAS  Google Scholar 

  • Brown RA, Lewis RL, Fiacco RJ, Leahy MC. 2006. The Technical Basis for In Situ Chemical Reduction (ISCR). Proceedings, Fifth International Conference on Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 22–25, Paper D-04.

    Google Scholar 

  • Burbano AA, Dionysiou DD, Suidan MT, Richardson TL. 2005. Oxidation kinetics and effect of pH on the degradation of MTBE with Fenton reagent. Water Res 39:107–118.

    Article  CAS  Google Scholar 

  • Buxton GV, Greenstock CL, Helman WP, Ross AB. 1988. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O) in aqueous solution. J Phys Chem Ref Data 17:513–530.

    Article  CAS  Google Scholar 

  • Buxton GV, McGowan S, Salmon GA, Williams JE, Wood ND. 1996. A study of the spectra and reactivity of the oxysulphur-radical anions involved in the chain oxidation of S(IV): A pulse and γ-radiolysis study. Atmos Environ 30:2483–2493.

    Article  CAS  Google Scholar 

  • Büyüksönmez F, Hess TF, Crawford RL, Paszczynski A, Watts RJ. 1999. Optimization of simultaneous chemical and biological mineralization of perchloroethylene. Appl Environ Microbiol 65:2784–2788.

    Google Scholar 

  • Cassidy D, Hampton D, Kohler S, Nuttall HE, Lundy WL. 2002. Comparative Study of Chemical Oxidation and Biodegradation of PCBs in Sediments. Proceedings, Third International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 20–23, Paper 2C-27.

    Google Scholar 

  • Chemburkar A, Warner J, Sklandany GJ, Brown RA. 2006. Use of Chemical Reductants to Stimulate Abiotic Reductive Pathways. Proceedings, International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 22–25, Paper D-02.

    Google Scholar 

  • Damm JH, Hardacre C, Kalin RM, Walsh KP. 2002. Kinetics of the oxidation of methyl tert-butyl ether (MTBE) by potassium permanganate. Water Res 36:3638–3646.

    Article  CAS  Google Scholar 

  • Droste EX, Marley MC, Parikh JM, Lee AM, Dinardo PM, Woody BA, Hoag GE, Chedda P. 2002. Observed Enhanced Reductive Dechlorination After In Situ Chemical Oxidation Pilot Test. Proceedings, Third International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 20–23, Paper 2C-01.

    Google Scholar 

  • Dugan PJ. 2008. Coupling Surfactants/Cosolvents with Oxidants: Effects on Remediation and Performance Assessment. PhD Dissertation. Colorado School of Mines. Golden, CO, USA.

    Google Scholar 

  • Falta R, Lee CM, Brame SE, Roeder E, Coates JT, Wright C, Wood AL. 1999. Field test of high molecular weight alcohol flushing for subsurface nonaqueous phase liquid remediation. Water Resour Res 35:2095–2108.

    Article  CAS  Google Scholar 

  • Fenton HJH. 1894. Oxidation of tartaric acid in presence of iron. J Chem Soc Trans 65:899–910.

    Article  CAS  Google Scholar 

  • Fogel S, Kerfoot WB. 2004. Bacterial Degradation of Aliphatic Hydrocarbons Enhanced by Pulsed Ozone Injection. Proceedings, Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 24–27, Paper 3B-05.

    Google Scholar 

  • Fogel S, Findlay M, Smoler D, Folsom S, Kozar M. 2009. The Importance of pH in Reductive Dechlorination of Chlorinated Solvents. Proceedings, Tenth International In situ and On-Site Bioremediation Symposium, Baltimore, MD, USA, May 5–8, Paper C3-01.

    Google Scholar 

  • Gardner FG, Korte N, Strong-Gunderson J, Siegrist RL, West OR, Cline SR, Baker JL. 1996. Implementation of Deep Soil Mixing at the Kansas City Plant. ORNL/TM-13532. Prepared for U.S. Department of Energy Office of Energy Research, Washington, DC, USA. 250 p.

    Google Scholar 

  • Goi A, Kulik N, Trapido M. 2006. Combined chemical and biological treatment of oil contaminated soil. Chemosphere 63:1754–1763.

    Article  CAS  Google Scholar 

  • Griffith SM, Schnitzer M. 1975. Oxidative degradation of humic and fulvic acids extracted from tropical volcanic soils. Can J Soil Sci 55:251–267.

    Article  CAS  Google Scholar 

  • Haapea P, Tuhkanen T. 2006. Integrated treatment of PAH contaminated soil by soil washing, ozonation, and biological treatment. J Hazard Mater B136:244–250.

    Article  Google Scholar 

  • Haber F, Weiss J. 1934. The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc Lond A Math Phys Sci 147:332–351.

    Article  CAS  Google Scholar 

  • Hewitt J, Morris JG. 1975. Superoxide dismutase in some obligately anaerobic bacteria. FEBS Lett 50:315–318.

    CAS  Google Scholar 

  • Howsawkeng J, Watts RJ, Washington DL, Teel AL, Hess TF, Crawford RL. 2001. Evidence for simultaneous abiotic–biotic oxidations in a microbial-Fenton’s system. Environ Sci Technol 35:2961–2966.

    Article  CAS  Google Scholar 

  • Hrapovic L, Sleep BE, Major DJ, Hood E. 2005. Laboratory study of treatment of trichloroethene by chemical oxidation followed by bioremediation. Environ Sci Technol 39:2888–2897.

    Article  CAS  Google Scholar 

  • Huang KC, Zhao Z, Hoag GE, Dahmani A, Block PA. 2005. Degradation of volatile organic compounds with thermally activated persulfate oxidation. Chemosphere 61:551–560.

    Article  CAS  Google Scholar 

  • Jeffers PM, Ward LM, Woytowitch LM, Wolfe NL. 1989. Homogeneous hydrolysis rate constants for selected chlorinated methanes, ethanes, ethenese and propanes. Environ Sci Technol 23:965–969.

    Article  CAS  Google Scholar 

  • Jung H, Ahn Y, Choi H, Kim IS. 2005. Effects of in-situ ozonation on indigenous microorganisms in diesel contaminated soil: Survival and regrowth. Chemosphere 61:923–932.

    Article  CAS  Google Scholar 

  • Jung H, Sohn K-D, Neppolian B, Choi H. 2008. Effect of soil organic matter (SOM) and soil texture on the fatality of indigenous microorganisms in integrated ozonation and biodegradation. J Hazard Mater 150:809–817.

    Article  CAS  Google Scholar 

  • Kao CM, Wu MJ. 2000. Enhanced TCDD degradation by Fenton’s reagent preoxidation. J Hazard Mater B74:197–211.

    Article  Google Scholar 

  • Kastner JR, Santo Domingo J, Denham M, Molina M, Brigmon R. 2000. Effect of chemical oxidation on subsurface microbiology and trichloroethene biodegradation. Bioremediat J 4:219–236.

    Article  CAS  Google Scholar 

  • Kavanaugh MC, Rao PSC, Abriola L, Cherry J, Destouni G, Falta R, Major D, Mercer J, Newell C, Sale T, Shoemaker S, Siegrist RL, Teutsch G, Udell K. 2003. The DNAPL Cleanup Challenge: Is There a Case for Source Depletion? EPA/600/R-03/143. USEPA National Risk Management Research Laboratory, Cincinnati, OH, USA. 129 p. http://www.epa.gov/nrmrl/pubs/600R03143/600r03143.htm. Accessed July 12, 2010.

  • Klens J, Pohlmann D, Scarborough S, Graves D. 2001. The Effects of Permanganate Oxidation on Subsurface Microbial Populations. In Leeson A, Kelley ME, Rifai HS, Magar VS, eds, Natural Attenuation of Environmental Contaminants: The Sixth International In Situ and On-Site Bioremediation Symposium. Battelle Press, Columbus, OH, USA, pp. 253–259.

    Google Scholar 

  • Kolthoff IM, Medalia AI, Raaen HP. 1951. The reaction between ferrous iron and peroxides: IV. Reaction with potassium persulfate. J Am Chem Soc 73:1733–1739.

    Article  CAS  Google Scholar 

  • Kolthoff IM, Sandell EB, Meehan EJ, Bruckenstein S. 1969. Quantitative Chemical Analysis. Macmillan, New York, NY, USA. 1199 p.

    Google Scholar 

  • Krembs FJ. 2008. Critical Analysis of the Field-Scale Application of In Situ Chemical Oxidation for the Remediation of Contaminated Groundwater. MS Thesis. Colorado School of Mines. Golden, CO, USA.

    Google Scholar 

  • Kulik N, Goi A, Trapido M, Tuhkanen T. 2006. Degradation of polycyclic aromatic hydrocarbons by combined chemical pre-oxidation and bioremediation in creosote contaminated soil. J Environ Manage 78:382–391.

    Article  CAS  Google Scholar 

  • Kwan WP, Voelker BM. 2003. Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems. Environ Sci Technol 37:1150–1158.

    Article  CAS  Google Scholar 

  • Landa AS, Sipkema EM, Weijma J, Beenackers AA, Dolfing J, Janssen DB. 1994. Cometabolic degradation of trichloroethylene by Pseudomonas cepacia G4 in a chemostat with toluene as the primary substrate. Appl Environ Microbiol 60:3368–3374.

    CAS  Google Scholar 

  • Lee BD, Hosomi M. 2001. A hybrid Fenton oxidation-microbial treatment for soil highly contaminated with benz(a)anthracene. Chemosphere 43:1127–1132.

    Article  CAS  Google Scholar 

  • Li Z. 2004. Surfactant-enhanced oxidation of trichloroethylene by permanganate – proof of concept. Chemosphere 54:419–423.

    Article  CAS  Google Scholar 

  • Li YS, You YH, Lien ET. 1999. Oxidation of 2,4-dinitrophenol by hydrogen peroxide in the presence of basic oxygen furnace slag. Arch Environ Contam Toxicol 37:427–433.

    Article  CAS  Google Scholar 

  • Liang C, Lee IL. 2008. In situ iron activated persulfate oxidative fluid sparging treatment of TCE contamination: A proof of concept study. J Contam Hydrol 100:91–100.

    Article  CAS  Google Scholar 

  • Liang C, Wang ZS, Bruell CJ. 2007. Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere 66:106–113.

    Article  CAS  Google Scholar 

  • Lindsey ME, Xu G, Lu J, Tarr MA. 2003. Enhanced Fenton degradation of hydrophobic organics by simultaneous iron and pollutant complexation with cyclodextrins. Sci Total Environ 307:215–229.

    Article  CAS  Google Scholar 

  • Lowe DF, Oubre CL, Ward CH, eds. 1999. Surfactants and Cosolvents for NAPL Remediation: A Technology Practices Manual. Advanced Applied Technology Demonstration Facility Program (AATDF) Monograph Series. CRC Press LLC, Boca Raton, FL, USA. 412 p.

    Google Scholar 

  • Luhrs RC, Lewis RW, Huling SG. 2006. ISCO’s Long-Term Impact on Aquifer Conditions and Microbial Activity. Proceedings, Fifth International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 22–25, Paper D-48.

    Google Scholar 

  • Lundstedt S, Persson Y, Oberg L. 2006. Transformation of PAHs during ethanol-Fenton treatment of an aged gasworks’ soil. Chemosphere 65:1288–1294.

    Article  CAS  Google Scholar 

  • Lute JR, Sklandany GJ, Nelson CH. 1998. Evaluating the Effectiveness of Ozonation and Combined Ozonation/Bioremediation Technologies. In Wickramanayake GB, Hinchee RE, eds, Designing and Applying Treatment Technologies. Battelle Press, Columbus, OH, USA, pp. 295–300.

    Google Scholar 

  • Macbeth TW. 2006. Microbial Population Dynamics as a Function of Permanganate Concentration: OK Tool, Milford, NH. North Wind, Inc., Report No. NWI-2234-001, April.

    Google Scholar 

  • Macbeth TW, Sorenson KS Jr. 2009. In Situ Bioremediation of Chlorinated Solvents with Enhanced Mass Transfer. Environmental Security Technology Certification Program (ESTCP) Cost and Performance Report for Project ER-0218. November. http://docs.serdp-estcp.org/. Accessed July 13, 2010.

  • Macbeth TW, Peterson LN, Starr RC, Sorenson KS, Goehlert R, Moor KS. 2005. ISCO Impacts on Indigenous Microbes in a PCE-DNAPL Contaminated Aquifer. Proceedings, Eighth In Situ and On-Site Bioremediation Symposium, Baltimore, MD, USA, June 6–9.

    Google Scholar 

  • Magnuson JK, Stern RV, Gossett JM, Zinder SH, Burris DR. 1998. Reductive dechlorination of tetrachloroethene to ethene by a two-component enzyme pathway. Appl Environ Microbiol 64:1270–1275.

    CAS  Google Scholar 

  • Martens DA, Frankenberger WT Jr. 1994. Feasibility of In Situ Chemical Oxidation of Refractile Chlorinated Organics by Hydrogen Peroxide-Generated Oxidative Radicals in Soil. In Means JL, Hinchee RE, eds, Emerging Technology for Bioremediation of Metals. Lewis Publishers, Boca Raton, FL, USA, pp. 74–84.

    Google Scholar 

  • Martens DA, Frankenberger WT. 1995. Enhanced degradation of polycyclic aromatic hydrocarbons in soil treated with an advanced oxidative process – Fenton’s reagent. J Soil Contam 4:175–190.

    Article  CAS  Google Scholar 

  • Maughon MJ, Casey CC, Bryant JD, Wilson JT. 2000. Chemical Oxidation Source Reduction and Natural Attenuation for Remediation of Chlorinated Hydrocarbons in Groundwater. In Wickramanayake GB, Gavaskar AR, eds, Physical and Thermal Technologies. Battelle Press, Columbus, OH, USA, pp. 307–314.

    Google Scholar 

  • Maymó-Gatell X. 1997. Dehalococcoides ethenogenes strain 195, a novel eubacterium that reductively dechlorinates tetrachloroethene (PCE) to ethene. Report No. AL/EQ-TR-1997-0029. Submitted to the Air Force Research Laboratory, Tyndall Air Force Base, FL, USA. 232 p.

    Google Scholar 

  • Miller CM, Valentine RL, Roehl ME, Alvarez P. 1996. Chemical and microbiological assessment of pendimethalin-contaminated soil after treatment with Fenton’s reagent. Water Res 30:2579–2586.

    Article  CAS  Google Scholar 

  • Millioli V, Freire DD, Cammarota MC. 2003. Petroleum oxidation using Fenton’s reagent over beach sand following a spill. J Hazard Mater 103:79–91.

    Article  CAS  Google Scholar 

  • Mohan SV, Kisa T, Ohkuma T, Kanaly RA, Shimizu Y. 2006. Bioremediation technologies for treatment of PAH-contaminated soil and strategies to enhance process efficiency. Rev Environ Sci Biotechnol 5:347–374.

    Article  CAS  Google Scholar 

  • Nam K, Kukor JJ. 2000. Combined ozonation and biodegradation for remediation of mixtures of polycyclic aromatic hydrocarbons in soil. Biodegradation 11:1–9.

    Article  CAS  Google Scholar 

  • Nam K, Rodriguez W, Kukor JJ. 2001. Enhanced degradation of polycyclic aromatic hydrocarbons by biodegradation combined with a modified Fenton reaction. Chemosphere 45:11–20.

    Article  CAS  Google Scholar 

  • Ndjou’ou A-C, Cassidy D. 2006. Surfactant production accompanying the modified Fenton oxidation of hydrocarbons in soil. Chemosphere 65:1610–1615.

    Article  Google Scholar 

  • Ndjou’ou A-C, Bou-Nasr J, Cassidy D. 2006. Effect of Fenton reagent dose on coexisting chemical and microbial oxidation in soil. Environ Sci Technol 40:2778–2783.

    Article  Google Scholar 

  • Neppolian B, Jung H, Choi H, Lee JH, Kang JW. 2002. Sonolytic degradation of methyl-tert-butyl ether: The role of coupled Fenton process and persulfate ion. Water Res 36:4699–4708.

    Article  CAS  Google Scholar 

  • Okwi GJ, Thomson NR, Gillham RW. 2005. The impact of permanganate on the ability of granular iron to degrade trichloroethene. Ground Water Monit Remediat 25:123–128.

    CAS  Google Scholar 

  • O’Mahony MM, Dobson ADW, Barnes JD, Singleton I. 2006. The use of ozone in the remediation of polycyclic aromatic hydrocarbon contaminated soil. Chemosphere 63:307–314.

    Article  Google Scholar 

  • Ortiz De Serra MI, Schnitzer M. 1973. The chemistry of humic and fulvic acids extracted from Argentine soils. II. Permanganate oxidation of methylated humic and fulvic acids. Soil Biol Biochem 5:287–296.

    Article  CAS  Google Scholar 

  • Pac T, Lewis RW, Connelly T. 2004. Sequential Implementation of In Situ Chemical Oxidation and Reductive Dechlorination. Proceedings, Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 24–27, Paper 5A-11.

    Google Scholar 

  • Palmroth MRT, Langwaldt JH, Aunola TA, Goi A, Münster U, Puhakka JA, Tuhkanen TA. 2006. Effect of modified Fenton’s reaction on microbial activity and removal of PAHs in creosote oil contaminated soil. Biodegradation 17:29–39.

    Article  CAS  Google Scholar 

  • Pardieck DL, Bouwer EJ, Stone AT. 1992. Hydrogen peroxide use to increase oxidant capacity for in situ bioremediation of contaminated soils and aquifers: A review. J Contam Hydrol 9:221–242.

    Article  CAS  Google Scholar 

  • Peyton GR. 1993. The free-radical chemistry of persulfate-based total organic carbon analyzers. Mar Chem 41:91–103.

    Article  CAS  Google Scholar 

  • Piskonen R, Itävaara M. 2004. Evaluation of chemical pretreatment of contaminated soil for improved PAH bioremediation. Appl Microbiol Biotechnol 65:627–634.

    Article  CAS  Google Scholar 

  • Rivas FJ, Beltrán FJ, Acedo B. 2000. Chemical and photochemical degradation of acenaphthylene: Intermediate identification. J Hazard Mater 75:89–98.

    Article  CAS  Google Scholar 

  • Sahl J, Munakata-Marr J. 2006. The effects of in situ chemical oxidation on microbiological processes: A review. Remediation 16:57–70.

    Article  Google Scholar 

  • Sahl JW, Munakata-Marr J, Crimi ML, Siegrist RL. 2007. Coupling permanganate oxidation with microbial dechlorination of tetrachloroethene. Water Environ Res 79:5–12.

    Article  CAS  Google Scholar 

  • Schlegel G. 1977. Aeration without air: Oxygen supply by hydrogen peroxide. Biotechnol Bioeng 19:413–424.

    Article  CAS  Google Scholar 

  • Scott JP, Ollis DF. 1995. Integration of chemical and biological oxidation processes for water treatment: Review and recommendations. Environ Prog 14:88–103.

    Article  CAS  Google Scholar 

  • Siegal J, Rees AA, Eggers KW, Hobbs RL. 2009. In situ chemical oxidation of residual LNAPL and dissolved-phase fuel hydrocarbons and chlorinated alkenes in groundwater using activated persulfate. Remediation 19:19-35.

    Article  Google Scholar 

  • Siegrist RL, Crimi ML, Munakata-Marr J, Illangasekare TH, Lowe KS, van Cuyk S, Dugan PJ, Heiderscheidt JL, Jackson SF, Petri BG, Sahl J, Seitz SJ. 2006. Reaction and Transport Processes Controlling In Situ Chemical Oxidation of DNAPLs. Final Report, Project ER-1290. Submitted to Strategic Environmental Research and Development Program (SERDP), Arlington, VA, USA. http://docs.serdp-estcp.org/. Accessed July 13, 2010.

  • Singh N, Lee DG. 2001. Permanganate: A green and versatile industrial oxidant. Org Process Res Dev 5:599–603.

    Article  CAS  Google Scholar 

  • Stehr J, Müller T, Svensson K, Kamnerdpetch C, Scheper T. 2001. Basic examinations on chemical pre-oxidation by ozone for enhancing bioremediation of phenanthrene contaminated soils. Appl Microbiol Biotechnol 57:803–809.

    Article  CAS  Google Scholar 

  • Szecsody JE, McKinley JP, Fruchter JS, Williams MD, Vermeul VR, Fredrickson HL, Thompson KT. 2006. In-Situ Chemical Reduction of Sediments for TCE, Energetics and NDMA Remediation. Proceedings, Fifth International Conference on the Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 22–25, Paper D-07.

    Google Scholar 

  • Tarr MA, Wei B, Zheng W, Xu G. 2002. Cyclodextrin-Modified Fenton Oxidation for In Situ Remediation. Proceedings, Third International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 20–23, Paper 2C-17.

    Google Scholar 

  • Teel AL, Finn DD, Schmidt JT, Cutler LM, Watts RJ. 2007. Rates of trace mineral-catalyzed decomposition of hydrogen peroxide. J Environ Eng 133:853–858.

    Article  CAS  Google Scholar 

  • Tsitonaki A, Smets BF, Bjerg PL. 2008. Effects of heat-activated persulfate oxidation on soil microorganisms. Water Res 42:1013–1022.

    Article  CAS  Google Scholar 

  • USEPA (U.S. Environmental Protection Agency). 2004. In Situ Thermal Treatment of Chlorinated Solvents: Fundamentals and Field Applications. EPA 542-R-04-010. USEPA Office of Solid Waste and Emergency Response, Washington, DC, USA. 145 p.

    Google Scholar 

  • Valderrama C, Alessandri R, Aunola T, Cortina JL, Gamisans X, Tuhkanen T. 2009. Oxidation by Fenton’s reagent combined with biological treatment applied to a creosote-contaminated soil. J Hazard Mater 166:594–602.

    Article  CAS  Google Scholar 

  • Waddell JP, Mayer GC. 2003. Effects of Fenton’s reagent and potassium permanganate applications on indigenous subsurface microbiota: A literature review. Proceedings, 2003 Georgia Water Resources Conference, Athens, GA, USA, April 23–24. http://www.gwri.gatech.edu/conferences/previous-gwrc-conferences/gwrc-2003/. Accessed July 12, 2010.

  • Waldemer RH, Tratnyek PG, Johnson RL, Nurmi JT. 2007. Oxidation of chlorinated ethenes by heat-activated persulfate: Kinetics and products. Environ Sci Technol 41:1010–1015.

    Article  CAS  Google Scholar 

  • Watts RJ, Dilly SE. 1996. Evaluation of iron catalysts for the Fenton-like remediation of diesel-contaminated soils. J Hazard Mater 51:209–224.

    Article  CAS  Google Scholar 

  • Weidhaas J, Macbeth TW. 2006. Influence of In Situ Chemical Oxidation on Microbial Population Dynamics: Savage Municipal Water Supply Site, Operable Unit 1, Milford, NH. North Wind, Inc., Report No. NWI-2234-002, November.

    Google Scholar 

  • Xu X, Thomson NR, MacKinnon LK, Hood ED. 2004. Oxidant Stability and Mobility: Controlling Factors and Estimation Methods. Proceedings, Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 24–27, Paper 2A-08.

    Google Scholar 

  • Xu P, Achari G, Mahmoud M, Joshi RC. 2006. Application of Fenton’s reagent to remediate diesel contaminated soils. Pract Period Hazard Toxic Radioact Waste Manage 10:19–27.

    Article  Google Scholar 

  • Zhai X, Hua I, Rao PSC, Lee LS. 2006. Cosolvent-enhanced chemical oxidation of perchloroethylene by potassium permanganate. J Contam Hydrol 82:61–74.

    Article  CAS  Google Scholar 

  • Zhuang P, Pavlostathis SG. 1995. Effect of temperature, pH and electron donor on the microbial reductive dechlorination of chloroalkenes. Chemosphere 31:3537–3548.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Munakata-Marr, J., Sorenson, K.S., Petri, B.G., Cummings, J.B. (2011). Principles of Combining ISCO with Other In Situ Remedial Approaches. In: Siegrist, R., Crimi, M., Simpkin, T. (eds) In Situ Chemical Oxidation for Groundwater Remediation. SERDP/ESTCP Environmental Remediation Technology, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7826-4_7

Download citation

Publish with us

Policies and ethics