Skip to main content

Subject-Specific Ligament Models: Toward Real-Time Simulation of the Knee Joint

  • Conference paper
  • First Online:
Computational Biomechanics for Medicine

Abstract

We present an efficient finite element method to simulate a transversely isotropic nonlinear material for ligaments. The approach relies on tetrahedral elements and exploits the geometry to optimize computation of the derivatives of the strain energy. To better support incompressibility, deviatoric and dilational responses are uncoupled and a penalty term controls volume preservation. We derive stress and elasticity tensors required for implicit solvers and verify our model against the FEBio software using a variety of load scenarios with synthetic shapes. The maximum node positioning error for ligament materials is <5% for strains under physiological conditions.

To generate subject-specific ligament models, we propose a novel technique to estimate fiber orientation from segmented ligament geometry. The approach is based on an automatic centerline extraction and generation of the corresponding diffusion field. We present results for a medial collateral ligament segmented from standard MRI data. Results show the general viability of the method, but also the limitations of current MRI acquisitions. In the future, we hope to employ the presented techniques for real-time simulation of knee surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    FEBio is available at the web site of the Musculoskeletal Research Laboratories of the University of Utah: http://mrl.sci.utah.edu/software.php

References

  1. Woo, S.L.Y., Debski, R.E., Withrow, J.D., Janaushek, M.A.: Biomechanics of knee ligaments. The American Journal of Sports Medicine, 27(4), 533–543 (1999)

    Google Scholar 

  2. Chen, J.X., Wechsler, H., Pullen, J.M., Zhu, Y., MacMahon, E.B.: Knee surgery assistance: patient model construction, motion simulation, and biomechanical visualization. IEEE Transactions on Biomedical Engineering, 48(9), 1042–1052 (2001)

    Article  Google Scholar 

  3. Ramaniraka, N.A., Saunier, P., Siegrist, O., Pioletti, D.P.: Biomechanical evaluation of intra-articular and extra-articular procedures in anterior cruciate ligament reconstruction: a finite element analysis. Clinical Biomechanics, 22, 336–343 (2007)

    Article  Google Scholar 

  4. Ellis, B.J., Lujan, T.J., Dalton, M.S., Weiss, J.A.: Medial collateral ligament insertion site and contact forces in the ACL-deficient knee. Journal of Orthopaedic Research, 24(4) 800–810 (2006)

    Article  Google Scholar 

  5. Fernandez, J.W., Hunter, P.J.: An anatomically based patient-specific finite element model of patella articulation: towards a diagnostic tool. Biomechanics and Modeling in Mechanobiology, 4, 20–38 (2005)

    Article  Google Scholar 

  6. Weiss, J.A., Maker, B.N., Govindjee, S.: Finite element implementation of incompressible, transversely isotropic hyperelasticity. Computer Methods in Applied Mechanics and Engineering, 135, 107–128 (1996)

    Article  MATH  Google Scholar 

  7. Pioletti, D.P., Rakotomanana, L.R., Benvenuti, J.F., Leyvraz, P.F.: Viscoelastic constitutive law in large deformations: application to human knee ligaments and tendons. Journal of Biomechanics, 31, 753–757 (1998)

    Article  Google Scholar 

  8. Wu, W., Heng, P.A.: An improved scheme of an interactive finite element model for 3D soft-tissue cutting and deformation. The Visual Computer, 21, 707–716 (2005)

    Article  Google Scholar 

  9. Picinbono, G., Delingette, H., Ayache, N.: Non-linear anisotropic elasticity for real-time surgery simulation. Graphical Models, 65, 305–321 (2003)

    Article  MATH  Google Scholar 

  10. Teran, J., Sifakis, E., Blemker, S.S., Ng-Thow-Hing, V., Lau, C., Fedkiw, R.: Creating and simulating skeletal muscle from the visible human data set. IEEE Transactions on Visualization and Computer Graphics, 11(3), 317–328 (2005)

    Article  Google Scholar 

  11. Joldes, G.R., Wittek, A., Miller, K.: Suite of finite element algorithms for accurate computation of soft tissue deformation for surgical simulation. Medical Image Analysis, 13(6), 912–919 (2009)

    Google Scholar 

  12. Taylor, Z.A., Comas, O., Cheng, M., Passenger, J., Hawkes, D.J., Atkinson, D., Ourselin, S.: On modelling of anisotropic viscoelasticity for soft tissue simulation: Numerical solution and GPU execution. Medical Image Analysis, 13(2), 234–244 (2009)

    Article  Google Scholar 

  13. Delingette, H.: Triangular springs for modeling nonlinear membranes. IEEE Transactions on Visualization and Computer Graphics, 14(2), 329–341 (2008)

    Article  Google Scholar 

  14. Bower, A.F.: Applied mechanics of solids. CRC, Boca Raton, FL (2009)

    Google Scholar 

  15. Weiss, J.A., Gardiner, J.C.: Computational modeling of ligament mechanics. Critical Reviews in Biomedical Engineering, 29(4), 1–70 (2001)

    Google Scholar 

  16. Bouix, S., Siddiqi, K., Tannenbaum, A.: Flux driven automatic centerline extraction. Medical Image Analysis, 9, 205–221 (2005)

    Article  Google Scholar 

  17. Allard, J., Cotin, S., Faure, F., Bensoussan, P.J., Poyer, F., Duriez, C., Delingette, H., Grisoni, L.: SOFA – an open source framework for medical simulation. In: Medicine Meets Virtual Reality (MMVR’15). Long Beach, USA (2007)

    Google Scholar 

  18. Baraff, D., Witkin, A.P.: Large steps in cloth simulation. In: Proceedings of the SIGGRAPH, pp. 43–54 (1998)

    Google Scholar 

Download references

Acknowledgment

This work is supported by the EU Marie Curie project 3D Anatomical Human (MRTN-CT-2006-035763).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Heimann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this paper

Cite this paper

Heimann, T., Chung, F., Lamecker, H., Delingette, H. (2010). Subject-Specific Ligament Models: Toward Real-Time Simulation of the Knee Joint. In: Miller, K., Nielsen, P. (eds) Computational Biomechanics for Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5874-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5874-7_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-5873-0

  • Online ISBN: 978-1-4419-5874-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics