Collaborative Interactivity in Parallel HPC Applications

Purchase on Springer.com

$29.95 / €24.95 / £19.95*

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Large-scale scientific research often relies on the collaborative use of massive computational power, fast networks, and large storage capacities provided by e-science infrastructures (e.g., deisa, egee) since the past several years. Especially within e-science infrastructures driven by high-performance computing (hpc) such as deisa, collaborative online visualization and computational steering (covs) has become an important technique to enable hpc applications with interactivity and visualized feedback mechanisms. In earlier work we have shown a prototype covs technique implementation based on the visualization interface toolkit (visit) and the Grid middleware of deisa named as Uniform Interface to Computing Resources (unicore). Since then the approach grew to a broader covs framework. More recently, we investigated the impact of using the computational steering capabilities of the covs framework implementation in unicore on large-scale hpc systems (i.e., ibm BlueGene/P with 65536 processors) and the use of attribute-based authorization. In this chapter we emphasize on the improved collaborative features of the covs framework and present new insights of how we deal with dynamic management of n participants, transparency of Grid resources, and virtualization of hosts of end-users. We also show that our interactive approach to hpc systems fully supports the necessary single sign-on feature required in Grid and e-science infrastructures.