Skip to main content

Evolutionary Considerations of Neurotransmitters in Microbial, Plant, and Animal Cells

  • Chapter
  • First Online:
Book cover Microbial Endocrinology

Abstract

The evolutionary perspective on the universal roles of compounds known as neurotransmitters may help in the analysis of interactions between organisms in a particular ecosystem (also known as biocenosis) – from microorganisms to plants and animals. This neurotransmitter-mediated phenomenon, which is significant for chemosignaling and cellular endocrinology, is an important consideration in the development of disease as the “living environment” influences every organism in the biocenosis relationships (microorganism–microorganism, microorganism–plant, microorganism–animal, plant–animal, plant–plant, and animal–animal). Non-nervous functions of neurotransmitters (rather “biomediators” on a cellular level) are considered in this review and compared with each other across different kingdoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amaroli A, Gallus L., Passalacqua M, Falugi C., Viarengo A., and Corrado M.U.D. 2003. Detection of cholinesterase activities and acetylcholine receptors during the developmental cycle of Dictyostelium discoideum. Eur. J. Protistol. 39: 213–222.

    Google Scholar 

  • Anuchin, A.M., Chuvelev, D.I., Kirovskaya, T.A., and Oleskin, A.V. 2007. The effect of monoamine neuromediators on the growth of culture and cellular aggregation of Escherichia coli K-12. In Reception and Intracellular Signaling. Proceedings of International conference, 5–7 June 2007, Pushchino, Ed V.P. Zinchenko. pp. 241–243. Pushchino: Institute of Cell Biophysics RAS.

    Google Scholar 

  • Anuchin, A.M., Chuvelev, D.I., Kirovskaya, T.A., and Oleskin, A.V. 2008. Effects of monoamine neuromediators on the growth-related variables of Escherichia coli K-12. Microbiology 77(6): 674–680.

    CAS  Google Scholar 

  • Askar, A., Rubach K. and Schormüller, J. 1972. Dünnschichtchromatographische Trennung der in Bananen vorkommenden Amin-Fraktion. Chem. Microbiol. Technol. Lebensm. 1: 187–190.

    CAS  Google Scholar 

  • Atta-ur-Rahman, Parveen, S., Khalid, A., Farooq, A., and Chouldhary, M.I. 2001. Acetyl and butyryl cholinesterase-inhibiting triterpenoid alkaloids from Buxus papillosa. Phytochemistry 58: 963–968.

    PubMed  CAS  Google Scholar 

  • Augustinsson, K.B. 1949. Substrate concentration and specificity of choline ester-splitting enzymes. Arch. Biochem. 23: 111.

    PubMed  CAS  Google Scholar 

  • Baburina O., Shabala S., and Newman I. 2000. Verapamil-induced kinetics of ion flux in oat seedlings. Aust. J. Plant Physiol. 27: 1031–1040.

    Google Scholar 

  • Badria, F.A. 2002. Melatonin, serotonin, and tryptamine in some Egyptian food and medicinal plants. J. Med. Food 5: 153–157

    PubMed  CAS  Google Scholar 

  • Bajjalieh, S.M. and Scheller R.H. 1995. The biochemistry of neurotransmitter secretion. J. Biol. Chem. 270 (5): 1971–1974.

    PubMed  CAS  Google Scholar 

  • Ballal, S., Ellias, R., Fluck, R., Jameton, R, Leber, P., Liri, R. and Salama, D. 1993. The synthesis and bioassay of indole-3-acetylcholine. Plant Physiol. and Biochem. 31: 249–255.

    CAS  Google Scholar 

  • Baluska, F., Mancuso, S., Volkmann, D., and Barlow, P. 2004. Root apices as plant command centers: the unique “brain-like” status of the root apex transition zone. Biologia (Bratislava) 59 Suppl. 13: 7–19.

    Google Scholar 

  • Baluska, F., Volkmann, D., and Menzel, D. 2005. Plant synapses: actin-based domains for cell-to-cell communication. Trends Plant Sci. 10: 106–111.

    PubMed  CAS  Google Scholar 

  • Baluska, F., Hlavacka, A., Mancuso, S., and Barlow, P.W. 2006a. Neurobiological view of plants and their body plan. In Communication in Plants – Neuronal Aspects of Plant Life, F. Baluska, S. Mancuso, and D. Volkmann, eds. pp. 19–35. Berlin: Springer.

    Google Scholar 

  • Baluska F, Mancuso S, and Volkmann D, eds. 2006b. Communication in Plants – Neuronal Aspects of Plant Life. Berlin: Springer.

    Google Scholar 

  • Balzer, I., Poeggeler, B., and Hardeland, R. 1993. Circadian rhythms of indoleamines in a dinoflagellate, Gonyaulax polyedra: persistence of melatonin rhythm in constant darkness and relationship to 5-methoxytryptamine. In Melatonin and the Pineal Gland: From Basic Science to Clinical Applications, Y. Touitou, J. Arendt, and P. Pevet, eds. pp. 83–186. Amsterdam: Excerpta Medica.

    Google Scholar 

  • Bamel K, Gupta S.C., and Gupta, R (2007) Acetylcholine causes rooting in leaf explants of in vitro raised tomato (Lycopersicon esculentum Miller) seedlings. Life Sci. 80(24–25): 2393–2396.

    PubMed  CAS  Google Scholar 

  • Bansal, T, Englert, D., Lee, J., Hegde, M., Wood, T.K. and Jayaraman, A. 2007. Differential effects of epinephrine, norepinephrine, and indole on Escherichia coli O157:H7 chemotaxis, colonization, and gene expression. Infect. Immun. 75(9): 4597–4607.

    PubMed  CAS  Google Scholar 

  • Barwell, C.J. 1979. The occurrence of histamine in the red alga of Furcellaria lumbricalis Lamour. Bot. Mar. 22: 399–401

    CAS  Google Scholar 

  • Barwell, C.J. 1989. Distribution of histamine in the thallus of Furcellaria lumbricalis. J. Appl. Phycol. 1: 341–344.

    Google Scholar 

  • Belenikina, N.S., Strakhovskaya, M.G., and Fraikin, G.Ya. 1991. Near-UV activation of yeast growth. J. Photochem. Photobiol. B 10: 51–55

    CAS  Google Scholar 

  • Bell, E.A. and Jansen, D.H. 1971. Medical and ecological considerations of L-dopa and 5-HTP in seeds. Nature 229: 136–137.

    PubMed  CAS  Google Scholar 

  • Beri, V., and Gupta, R 2007. Acetylcholinesterase inhibitors neostigmine and physostigmine inhibit induction of alpha-amylase activity during seed germination in barley, Hordeum vulgare var. Jyoti. Life Sci. 80: 2386–2388.

    PubMed  CAS  Google Scholar 

  • Berman, A.L., Dityatev, A.E., and Frishman, D.I. 1991. Physicochemical properties of signal receptor domains as the basis for sequence comparison. Comp. Biochem. Physiol. B 98: 445–449.

    PubMed  CAS  Google Scholar 

  • Boaventura, M.A.D., Lopes, R.F.A., and Takahashi, J.A. 2004. Microorganisms as tools in modern chemistry: the biotransformation of 3-indolylacetonitrile and tryptamine by fungi. Braz. J. Microbiol. 35: 345–347.

    CAS  Google Scholar 

  • Bodmer, S., Imark, C., and Kneubühl, M. 1999. Biogenic amines in foods: histamine and food processing. Inflamm. Res. 48: 296–300.

    PubMed  CAS  Google Scholar 

  • Boron, W.F. and Boulpaep, E.L. 2005. Medical Physiology: A Cellular and Molecular Approach. Philadelphia, PA: Elsevier/Saunders.

    Google Scholar 

  • Boucek, R.J. and Alvarez, T.R. 1970. 5-Hydroxytryptamine: a cytospecific growth stimulator of cultured fibroblasts. Science 167: 898–899.

    PubMed  CAS  Google Scholar 

  • Bozso, B.A., Fluck, R.A., Jameton, R.A., Leber, P.A., and Varnes, J.G. 1995. A versatile and efficient methodology for the preparation of choline ester auxin conjugates. Phytochemistry 40: 1027–1031.

    CAS  Google Scholar 

  • Brenner, E.D., Stahlberg, R., Mancuso, S., Vivanco, J.M., Baluska, F., and van Volkenburgh, E. 2006. Plant neurobiology: an integrated view of plant signaling. Trends Plant Sci. 11: 413–419.

    PubMed  CAS  Google Scholar 

  • Budantsev, A.Yu. and Roshchina, V.V. 2007. Cholinesterase activity as a biosensor reaction for natural allelochemicals: pesticides and pharmaceuticals. In Cell Diagnostics. Images, Biophysical and Biochemical Processes in Allelopathy, V.V. Roshchina and S.S. Narwal, eds. pp. 127–146. Plymouth: Science Publisher.

    Google Scholar 

  • Budantsev, A.Yu. and Roshchina, V.V. 2004. Testing alkaloids as acetylcholinesterase activity inhibitors. Farmatsiya (Moscow) 5: 37–39.

    Google Scholar 

  • Burton, C.L., Chhabra, S.R., Swift S., Baldwin, T.J, Withers, H., Hill, St. J., and Williams, P. 2002. The Growth response of Escherichia coli to neurotransmitters and related catecholamine drugs requires a functional enterobactin biosynthesis and uptake system. Infect Immun 70: 5913–5923.

    PubMed  CAS  Google Scholar 

  • Buznikov, G.A. 1967. Low Molecular Weight Regulators in Embryonic Development. Moscow: Nauka, 265 pp.

    Google Scholar 

  • Buznikov, G.A. 1987. Neurotransmitters in Embryogenesis. Moscow: Nauka, 232 pp.

    Google Scholar 

  • Buznikov, G.A. 1990. Neurotransmitters in Embryogenesis. Chur, Switzerland: Harwood Academic Press, 526 pp.

    Google Scholar 

  • Buznikov, G.A. 2007. Preneuronal transmitters as regulators of embryogenesis. Current state of problem. Russ. J. Develop. Biol. (Ontogenesis) 38: 262–270.

    CAS  Google Scholar 

  • Buznikov. G.A., Shmukler, Y.B., and Lauder, J.M. 1996. From oocyte to neuron: do neurotransmitters function in the same way throughout development? Cell Mol. Neurobiol. 16: 537–559

    PubMed  CAS  Google Scholar 

  • Cantiello, H.F. 1997. Role of actin filaments organization in cell volume and ion channel regulation. J. Exp. Zool. 279: 425–435.

    PubMed  CAS  Google Scholar 

  • Christophersen, C. 1991. Evolution in molecular structure and adaptive variance in metabolism. Comp. Biochem. Physiol. B 98: 427–443.

    PubMed  CAS  Google Scholar 

  • Corrado, D.M.U., Politi, H., Trielli, F., Angelini, C., and Falugi, C.1999. Evidence for the presence of a mammalian-like cholinesterase in Paramecium primaurelia (Protista, Ciliophora) developmental cycle. J. Exp. Zool. 283: 102–105.

    CAS  Google Scholar 

  • Corrado, D.M.U., Ballarini, P., and Falugi, C. 2001 Synthesis of the molecular acetylcholine during the developmental cycle of Paramecium primaurelia (Protista, Ciliophora) and its possible function in conjugation. J. Exp. Biol. 204: 1901–1907.

    CAS  Google Scholar 

  • Coulanges, V., Andre, P., Ziegler, O., Buchheit, L., and Vidon, J.-M. 1997. Utilization of iron-catecholamine complexes involving ferric reductase activity in Listeria monocytogenes. Infect. Immun. 65: 2778–2785.

    PubMed  CAS  Google Scholar 

  • Csaba, G. 1980. Phylogeny and ontogeny of hormone receptors: the selection theory of receptor formation and hormonal imprinting. Biol. Rev. 55: 47–63.

    PubMed  CAS  Google Scholar 

  • Csaba, G. and Muller, W.E.G. 1996. Signalling Mechanisms in Protozoa and Invertebrates. Berlin: Springer.

    Google Scholar 

  • Devalia, J.L., Grady, D., Harmanyeri, Y., Tabaqchali, S., and. Davies, R. J. 1989. Histamine synthesis by respiratory tract micro-organisms: possible role in pathogenicity. J. Clin. Pathol. 42: 516–522.

    PubMed  CAS  Google Scholar 

  • Ekici, K. and Coskun, H. 2002. Histamine content of some commercial vegetable pickles. Proceedings of ICNP-2002 – Trabzon, Turkye. pp. 162–164.

    Google Scholar 

  • Ekici, K., Coskun, H., Tarakci, Z., Ondul, E., and Sekeroglu, R. 2006. The contribution of herbs to the accumulation of histamine in “otlu” cheese. J. Food Biochem. 30: 362–371.

    CAS  Google Scholar 

  • Evans, D.G., Miles, A.A., and. Niven, J.S.F. 1948. The enhancement of bacterial infections by adrenaline. Br. J. Exp. Pathol. 29: 20–39.

    PubMed  CAS  Google Scholar 

  • Faust, M.A. and Doetsch, R.N. 1971. Effect of drugs that alter excitable membranes on the motility of Rhodospirillum rubrum and Thiospirillum rubrum and Thiospirillum jenense. Can. J. Microbiol. 17: 191–196.

    PubMed  CAS  Google Scholar 

  • Fernández, M., del Río, B., Linares, D.M., Martín M.C., and Alvarez M.A. 2006. Real-time polymerase chain reaction for quantitative detection of histamine-producing bacteria: use in cheese production. J. Dairy Sci. 89: 3763–3769.

    PubMed  Google Scholar 

  • Fernstrom, J.D. and Wurtman, R.J. 1971. Brain serotonin content: physiological dependence on plasma tryptophan levels. Science 173: 149–152.

    Google Scholar 

  • Fitch, W.M. 1963a Studies on a cholinesterase of Pseudomonas fluorescens. I. Enzyme induction and the metabolism of acetylcholine. Biochemistry 2: 1217–1221.

    PubMed  CAS  Google Scholar 

  • Fitch. W.M. 1963b. Studies on a cholinesterase of Pseudomonas fluorescens. II. Purification and properties. Biochemistry 2(6): 1221–1227.

    PubMed  CAS  Google Scholar 

  • Fluck, R.A., Leber, P.A., Lieser, J.D., Szczerbicki, S.K., Varnes, J.G., Vitale, M.A., and Wolfe, E.E. 2000. Choline conjugates of auxins. I. Direct evidence for the hydrolysis of choline-auxin conjugates by pea cholinesterase. Plant Physiol. Biochem. 38: 301–308.

    CAS  Google Scholar 

  • Fraikin, G.Ya., Strakhovskaya, M.G., Ivanova, E.V., and Rubin, A.B. 1989. Near-UV activation of enzymatic conversion of 5-hydroxytryphophan to serotonin. Photochem. Photobiol. 49: 475–477.

    PubMed  CAS  Google Scholar 

  • Freestone, P.P.E. and Lyte, M. 2008. Microbial endocrinology: experimental design issues in the study of interkingdom signalling in infectious disease.Adv. Appl. Microbiol. 64: 75–105.

    PubMed  CAS  Google Scholar 

  • Freestone, P. E., Haigh, R. D. Williams, P. H., and M. Lyte. 1999. Stimulation of bacterial growth by heat-stable, norepinephrine-induced autoinducers. FEMS Microbiol. Lett. 172: 53–60.

    PubMed  CAS  Google Scholar 

  • Freestone, P.E., Lyte, M., Neal, C.P., Maggs, A.F., Haigh, R.D., and Williams, P.H. 2000. The mammalian neuroendocrine hormone norepinephrine supplies iron for bacterial growth in the presence of transferrin or lactoferrin. J. Bacteriol. 182: 6091–6098.

    PubMed  CAS  Google Scholar 

  • Freestone, P.E., Haigh, R.D., and Lyte, M. 2007. Blockade of catecholamine-induced growth by adrenergic and dopaminergic receptor antagonists in Escherichia coli O157: H7, Salmonella enterica and Yersinia enterocolitica. BMC Microbiol. 7: 8–11.

    PubMed  Google Scholar 

  • Freestone,.P.P.E, Sandrini, S.M., Haigh, R.D., and Lyte, M. 2008a. Microbial endocrinology: how stress influences susceptibility to infection. Trends Microbiol. 16: 55–64.

    PubMed  CAS  Google Scholar 

  • Freestone, P.P.E., Haigh, R.D., and Lyte, M. 2008b. Catecholamine inotrope resuscitation of antibiotic-damaged staphylococci and its blockade by specific receptor antagonists. J. Infect. Dis. 197: 1044–1052.

    PubMed  CAS  Google Scholar 

  • Fryxell, K.J. and Meyerowitz, E.M. 1991. The evolution of rhodopsins and neurotransmitter receptors. J. Mol. Evol. 33: 367–378.

    PubMed  CAS  Google Scholar 

  • Girvin, G.T. and Stevenson, J.W. 1954. Cell free “choline acetylase” from Lactobacillus plantarum. Can. J. Biochem. Physiol. 32: 131–146.

    PubMed  CAS  Google Scholar 

  • Goldstein, D.B. 1959. Induction of cholinesterase biosynthesis in Pseudomonas fluorescens. J. Bacteriol. 78: 695–702.

    PubMed  CAS  Google Scholar 

  • Goldstein, D.B. and Goldstein, A. 1953. An adaptive bacterial cholinesterase from Pseudomonas species. J. Gen. Microbiol. 8: 8–17.

    PubMed  CAS  Google Scholar 

  • Gong, X.O. and Bisson, M.A. 2002. Acetylcholine-activated Cl- channel in the Chara tonoplast. J. Membr. Biol. 188: 107–113.

    PubMed  CAS  Google Scholar 

  • Gundersen, R.E. and Thompson, G.A. Jr. 1985. Further studies of dopamine metabolism and function in Tetrahymena. J. Eukaryot. Microbiol. 32: 25–31.

    CAS  Google Scholar 

  • Gupta, A., Thakur, S.S., Uniyal, P.L., and Gupta, R. 2001. A survey of Bryophytes for presence of cholinesterase activity. Am. J. Bot. 88: 2133–2135.

    PubMed  CAS  Google Scholar 

  • Heller, I., Leitner, S., Dierich, M. P., and Lass-Flörl, C. 2004. Serotonin (5-HT) enhances the activity of amphotericin B against Aspergillus fumigatus in vitro. Int. J. Antimicrob. Agents 24: 401–404.

    PubMed  CAS  Google Scholar 

  • Hikino, H., Ogata, M., and Konno, C. 1983. Structure of feruloylhistamine, a hypotensive principle of Ephedra roots. Planta Med. 48: 108–109.

    PubMed  CAS  Google Scholar 

  • Hsu, S.C., Johansson, K.R., and Donahue, M.J. 1986. The bacterial flora of the intestine of Ascaris suum and 5-hydroxytryptamine production. J. Parasitol. 72: 545–549.

    PubMed  CAS  Google Scholar 

  • Imshenetskii, A.A., Popova, L.S., and Kirilova, N.F. 1974. Microorganisms decomposing acetylcholine. Microbiology (in Russian) 43(6): 986–991.

    CAS  Google Scholar 

  • Ishihara, A., Hashimoto, Y., Tanaka, C., Dubouzet, J. G.., Nakao, T., Matsuda, F., Nishioka, T., Miyagawa, H., and Wakasa, K. 2008. The tryptophan pathway is involved in the defense responses of rice against pathogenic infection via serotonin production. Plant J. 54(3): 481–495.

    PubMed  CAS  Google Scholar 

  • Iyer, L.M., Aravind, L., Coon, S.L., Klein, D.C., and Koonin, E.V. 2004. Evolution of cell–cell signaling in animals: did late horizontal gene transfer from bacteria have a role? Trends Genet. 20(7): 292–299.

    PubMed  CAS  Google Scholar 

  • Janakidevi, K., Dewey, V.C., and Kidder, G.W. 1966a. Serotonin in protozoa. Arch. Biochem. Biophys. 113: 758–759.

    PubMed  CAS  Google Scholar 

  • Janakidevi, K., Dewey, V.C., and Kidder, G.W. 1966b. The biosynthesis of catecholamines in two genera of Protozoa. J. Biol. Chem. 241: 2576–2578.

    PubMed  CAS  Google Scholar 

  • Kagarlitskii, G.O, Kirovskaya, T.A., and Oleskin, A.V. 2003. The effects of neuromediator amines on the growth and respiration of microorganisms. In Biopolytics, Seminar of Biological Faculty of MGU, pp.13–17.

    Google Scholar 

  • Kamo, K.K. and Mahlberg, P.G. 1984. Dopamine biosynthesis at different stages of plant development in Papaver somniferum. J. Nat. Prod. 47: 682–686.

    PubMed  CAS  Google Scholar 

  • Kang, S., Kang, K., Lee, K., and Back, K. 2007. Characterization of tryptamine 5-hydroxylase and serotonin synthesis in rice plants. Plant Cell Rep. 26: 2009–2015.

    PubMed  CAS  Google Scholar 

  • Kaprelyants, A.S., and Kell, D.B. 1996. Do bacteria need to communicate with each other for growth? Trends Microbiol. 4: 237–242.

    PubMed  CAS  Google Scholar 

  • Kaprelyants, A.S., Mukamolova, G.V., Kormer, S.S., Weichart, D.H., Young, M., and Kell, D.B. 1999. Intercellular signaling and the multiplication of prokaryotes. In Microbial Signaling and Communication, R. England, et al., eds. Society for General Microbiology Symposium 57, pp. 33–69. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kawashima, K., Misawa, H., Moriwaki, Y., Fujii, Y.X., Fujii, T., Horiuchi, Y., Yamada, T., Imanaka, T., and Kamekura, M. 2007. Ubiquitous expression of acetylcholine and its biological functions in life forms without nervous systems. Life Sci. 80: 2206–2209.

    PubMed  CAS  Google Scholar 

  • Kondashevskaya, M.V., Lyapina, L.A., and Smolina, T.Yu. 1996. Complexes of high- and low-molecular heparin with serotonin and their physiological features. Vestn. MGU Ser. Biol. 16: 17–20.

    Google Scholar 

  • Koshtoyantz, Ch.S. 1963. Problems of enzymochemistry of the processes of excitation and depression and evolution of the function of nervous system. 17th Bakh Lection (USSR), AN SSSR Publ. House, Moscow, 31 pp.

    Google Scholar 

  • Kovaleva, L.V. and Roshchina, V.V. 1997. Does cholinesterase participate in the intercellular interaction in pollen-pistil system? Biol. Plant. 39(2): 207–213

    CAS  Google Scholar 

  • Kozlov, G.S. 1972. Changes in the blood and tissue histamine content in rabbits when sensitized with streptococci combined with heart muscle extract. Bull. Exp. Biol. Med. 74: 1028–1029.

    Google Scholar 

  • Kruk, Z.L. and Pycock, C.J. 1990. Neurotransmitters and Drugs. New York: Chapman and Hall.

    Google Scholar 

  • Kuklin, A.I. and Conger, B.V. 1995. Catecholamines in plants. J.Plant Growth Regul. 14: 91–97.

    CAS  Google Scholar 

  • Kulma, A. and Szopa, J. 2007. Catecholamines are active compounds in plant. Plant Sci. 172: 433–440.

    CAS  Google Scholar 

  • Kung, H.F., Tsai, Y.H., and Wei, C.I. 2007. Histamine and other biogenic amines and histamine-forming bacteria in miso products. Food Chem. 101: 351–356.

    CAS  Google Scholar 

  • Laing, A.C., Miller, H.R., and Bricknell, K.S. 1967. Purification and properties of the inducible cholinesterase of Pseudomonas fluorescence (Goldstein). Can. J. Biochem. 45: 1711–1724.

    PubMed  CAS  Google Scholar 

  • Laing. A.C., Miller, H.R., and Patterson, K.M. 1969. Purification of bacterial cholinesterase. Can. J. Biochem. 47: 219–220.

    PubMed  CAS  Google Scholar 

  • Landete, J. M., Ferrer, S., and Pardo. I. 2005. Which lactic acid bacteria are responsible for histamine production in wine? J. Appl. Microbiol. 99:580–586.

    PubMed  CAS  Google Scholar 

  • Lauder, J.M. and Schambra, U.B. 1999. Morphogenetic roles of acetylcholine. Environmental health perspectives. Rev. Environ. Health 107(Suppl. 1): 65–69.

    CAS  Google Scholar 

  • Lawrence, S.A. 2004. Amines: Synthesis, Properties and Applications. Cambridge: Cambridge University Press.

    Google Scholar 

  • Le Novere, N. and Changeux, J.P. 1995. Molecular evolution of the nicotinic acetylcholine receptor: an example of multigene family in excitable cells. J. Mol. Evol. 40: 155–172.

    PubMed  Google Scholar 

  • Lenard, J. 1992. Mammalian hormones in microbial cells. Trends Biochem. Sci. 17: 147–150.

    PubMed  CAS  Google Scholar 

  • Leng, Q., Hua, B., Guo, Y., and Lou, C. 2000. Regulating role of acetylcholine and its antagonists in inward rectified K+ channels from guard cells protoplasts of Vicia faba Science in China. Ser. C. 43(2): 217–224.

    CAS  Google Scholar 

  • Lu, G., DeLisle, A.J., de Vetten, N.C., and Ferl, R.J. 1992. Brain proteins in plants: an Arabidopsis homolog to neurotransmitter pathway activators is part of a DNA binding complex. Proc. Natl. Acad. Sci. USA 89: 11490–11494.

    PubMed  CAS  Google Scholar 

  • Luedtke, R.R., Freeman, R.A., Volk, M., Arfan, M., and Reinecke, M.G. 2003. Pharmacological survey of medicinal plants for activity at dopamine receptor subtypes. II. Screen for binding activity at the D1 and D2 dopamine receptor subtypes. Pharm. Biol. 41: 45–58.

    Google Scholar 

  • Lyte, M. 1992. The role of microbial endocrinology in infection disease. J. Endocrinol. 137: 343–345.

    Google Scholar 

  • Lyte, M. and Bailey, M.T. 1997. Neuroendocrine-bacterial interactions in neurotoxin-induced model of trauma. J. Surg. Res. 70: 195–201.

    PubMed  CAS  Google Scholar 

  • Lyte, M. and Ernst, S. 1992. Catecholamine induced growth of gram negative bacteria. Life Sci. 50: 203–212.

    PubMed  CAS  Google Scholar 

  • Lyte, M. and Ernst, S. 1993. Alpha and beta adrenergic receptor involvement in catecholamine-induced growth of gram-negative bacteria. Biochem. Biophys. Res. Commun. 190: 447–452.

    PubMed  CAS  Google Scholar 

  • Lyte, M., Frank, C.D., and Green, B.T. 1996. Production of an autoinducer of growth by norepinephrine cultured Escherichia coli O157: H7. FEMS Microbiol. Lett. 139: 155–159.

    PubMed  CAS  Google Scholar 

  • Lyte, M., Arulanandam, B., Nguyen, K., Frank, C., Erickson, A., and Francis, D. 1997. Norepinephrine induced growth and expression of virulence associated factors in enterotoxigenic and enterohemorrhagic strains of Escherichia coli. Adv. Exp. Med. Biol. 412: 331–339.

    CAS  Google Scholar 

  • Marquardt, P. and Falk, H. 1957. Vorkommen und Syntheses von Acetylcholine in Pflanzen and Bakterien. Arzneimittelforschung 7: 203–211.

    PubMed  CAS  Google Scholar 

  • Marquardt, P. and Spitznagel, G. 1959. Bakterielle Acetylcholine Bildung in Kunstlichen Nahrboden. Arzneimittelforschung 9: 456–465.

    PubMed  CAS  Google Scholar 

  • Martín, M.C., Fernández, M., Linares, D.M., and Alvarez, M.A. 2005. Sequencing, characterization and transcriptional analysis of the histidine decarboxylase operon of Lactobacillus buchneri. Microbiology 151: 1219–1228.

    PubMed  Google Scholar 

  • Megaw, M.W.J. and Robertson, H.A. 1974. Dopamine and noradrenaline in the salivary glands and brain of the tick, Boophilus microplus: effect of reserpine. Cell. Mol. Life Sci. 30: 1261–1262.

    CAS  Google Scholar 

  • Meng, F., Liu, X., Zhang, S., and Lou, C. 2001. Localization of muscarinic acetylcholine receptor in plant guard cells. Chin. Sci. Bull. 46: 586–589.

    CAS  Google Scholar 

  • Meng, F., Miao, L., Zhang, S., and Lou, C. 2004. Ca2+ is involved in muscarine acetylcholine receptor –mediated acetylcholine signal transduction in guard cells of Vicia faba. Chin. Sci. Bull. 49(5): 471–475.

    CAS  Google Scholar 

  • Mohapatra, B.R. and Bapujr, M. 1998. Characterization of acetylcholinesterase from Arthrobacter ilicis associated with the marine sponge. J. Appl. Microbiol. 84(3): 393–398.

    CAS  Google Scholar 

  • Momonoki, Y.S. 1997. Asymmetric distribution of acetylcholinesterase in gravistimulated maize seedlings. Plant Physiol. 114: 47–53.

    PubMed  CAS  Google Scholar 

  • Murch, S.J. 2006. Neurotransmitters, neuroregulators and neurotoxins in plants. In Communication in Plants – Neuronal Aspects of Plant Life, F. Baluska, S. Mancuso, and D. Volkmann, eds. pp. 137–151. Berlin: Springer.

    Google Scholar 

  • Nachmansohn, D. and Machado, A.L. 1943. The formation of acetylcholine. A new enzyme “choline acetylase”. J. Neurophysiol. 6: 397–403.

    CAS  Google Scholar 

  • Neal, C.P., Freestone, P.P.E., Maggs, A.F., Haigh, R.D., Williams, P.H., and Lyte, M. 2001. Catecholamine inotropes as growth factors for Staphylococcus epidermidis and other coagulase-negative staphylococci. FEMS Microbiol. Lett. 194: 163–169.

    PubMed  CAS  Google Scholar 

  • Nelson T., Lee, D., and Smith, B. 2003. Are ‘green tides’ harmful algal blooms? Toxic properties of water-soluble extracts from two bloom-forming macroalgae, Ulva fenestrate and Ulvaria obscura (Ulvophyceae). J. Phycol. 39: 874–879.

    CAS  Google Scholar 

  • Oleskin, A.V. 2007. Biopolitics. Moscow: Nauchnii Mir., 508 pp.

    Google Scholar 

  • Oleskin, A.V. and Kirovskaya, T.A., 2006. Research on population organization and communication in microorganisms. Microbiology (Russia) 75: 440–445.

    CAS  Google Scholar 

  • Oleskin, A.V., Kirovskaya, T.A., Botvinko, I.V., and Lysak, L.V., 1998a. Effects of serotonin (5-hydroxytryptamine) on the growth and differentiation of microorganisms. Microbiology (Russia) 67: 305–312.

    CAS  Google Scholar 

  • Oleskin, A.V., Botvinko, I.V., and Kirovskaya, T.A. 1998b. Microbial endocrinology and biopolytics. Vestn. Mosc. Univ. Ser. Biol. 4: 3–10.

    Google Scholar 

  • Oleskin, A.V., Botvinko, I.V., and Tsavkelova, E.A. 2000. Colonial organization and intercellular communication of microorganisms. Microbiology (Russia) 69: 309–327.

    CAS  Google Scholar 

  • Pershin, G.N., and Nesvadba, V.V. 1963. A study of monoamino oxidase activity in mycobacteria. Bull. Exp. Biol. Med. 56: 81–84.

    CAS  Google Scholar 

  • Pertseva, M.N. 1989. Molecular Base of the Development of the Hormone-Competency. Leningrad: Nauka, 310 pp.

    Google Scholar 

  • Pertseva, M.N. 1990a. The path of the evolution of the hormonal signal realization system. Sechenov Physiol. J. USSR 76: 1126–1137.

    CAS  Google Scholar 

  • Pertseva, M.N. 1990b. Is the evolution similarity between chemosignalling systems of eukaryotes and prokaryotes? J. Evol. Biochem. Physiol. (Russia) 26: 505–513.

    CAS  Google Scholar 

  • Ponchet, M., Martin-Tanguy, J., Marais, A., and Martin, C. 1982. Hydroxycinnamoyl acid amides and aromatic amines in the influorescences of some Araceae species. Phytochemistry 21: 2865–2869.

    CAS  Google Scholar 

  • Posmyk, M.M. and Janas, K.M. 2009. Melatonin in plants. Acta Physiol. Plant 31: 1–11.

    CAS  Google Scholar 

  • Roberts, A., Matthews, J.B., Socransky, S.S., Freestone, P.P.E, Williams, P.H., and Chapple, I.L.C. 2002. Stress and the periodontal diseases: effects of catecholamines on the growth of periodontal bacteria in vitro. Oral Microbiol. Immunol. 17: 296–303.

    PubMed  CAS  Google Scholar 

  • Romanovskaya, M.G. and Popenenkova, Z.A. 1971. Effect of vetrazine, chloracizine, and chlorpromazine on histamine and serotonin content in organs of rabbits with Bacterium prodigiosum bacteriemia. Bull Exp. Biol. Med. 520–522.

    Google Scholar 

  • Roshchina, V.V. 1989. Biomediators in chloroplasts of higher plants. I. The interaction with photosynthetic membranes. Photosynthetica 23: 197–206.

    CAS  Google Scholar 

  • Roshchina,V.V. 1990a. Biomediators in chloroplasts of higher plants. 3. Effect of dopamine on photochemical activity. Photosynthetica 24: 117–121.

    CAS  Google Scholar 

  • Roshchina,V.V. 1990b. Biomediators in chloroplasts of higher plants. 4. Reception by photosynthetic membranes. Photosynthetica 24: 539–549.

    CAS  Google Scholar 

  • Roshchina, V.V. 1991. Biomediators in plants. Acetylcholine and biogenic amines. Pushchino: Biological Center of USSR Academy of Sciences, 192 pp.

    Google Scholar 

  • Roshchina,V.V. 2001a. Neurotransmitters in plant life. Plymouth: Science Publ., 283 pp.

    Google Scholar 

  • Roshchina, V.V. 2001b. Molecular-cellular mechanisms in pollen allelopathy. Allellopathy J. 8: 3–25.

    Google Scholar 

  • Roshchina,V.V. 2004. Cellular models to study the allelopathic mechanisms. Allelopathy J. 13: 3−16.

    Google Scholar 

  • Roshchina,V.V. 2005a. Contractile proteins in chemical signal transduction in plant microspores. Biol. Bull. 32: 281–286.

    Google Scholar 

  • Roshchina, V.V. 2005b. Allelochemicals as fluorescent markers, dyes and probes. Allelopathy J. 16: 31–46.

    Google Scholar 

  • Roshchina, V.V. 2006a. Chemosignaling in plant microspore cells. Biol. Bull. 33: 414–420.

    Google Scholar 

  • Roshchina, V.V. 2006b. Plant microspores as biosensors. Trends Mod. Biol. (Russia) 126: 262–274.

    Google Scholar 

  • Roshchina, V.V. 2007. Cellular models as biosensors. In Cell Diagnostics: Images, Biophysical and Biochemical Processes in Allelopathy, V.V. Roshchina and S.S. Narwal, eds. pp. 5–22. Plymouth: Science Publisher.

    Google Scholar 

  • Roshchina, V.V. 2008. Fluorescing World of Plant Secreting Cells. Plymouth: Science Publishers, 338 pp.

    Google Scholar 

  • Roshchina, V.V. 2009. Effects of proteins, oxidants and antioxidants on germination of plant microspores. Allelopathy J. 23(1): 37–50.

    Google Scholar 

  • Roshchina, V.V. and Roshchina, V.D. 1993. The Excretory Function of Higher Plants. Berlin: Springer, 314 pp.

    Google Scholar 

  • Roshchina, V.V. and Vikhlyantsev, I.M. 2009. Mechanisms of chemosignalling in allelopathy: role of Ion channels and cytoskeleton in development of plant microspores. Allelopathy J. 23(1): 25–36.

    Google Scholar 

  • Roshchina, V.V., Bezuglov, V.V., Markova, L.N., Sakharova, N.Yu., Buznikov, G.A., Karnaukhov, V.N., and Chailakhyan, L.M. 2003. Interaction of living cells with fluorescent derivatives of biogenic amines. Dokl. Russ. Acad. Sci. 393: 832–835.

    Google Scholar 

  • Rowatt, E. 1948. The relation of pantothenic acid to acetylcholine formation by a strain of Lactobacillus plantarum. J. Gen. Microbiol. 2: 25–30.

    CAS  Google Scholar 

  • Sagane, Y., Nakagawa, T., Yamamoto, K., Michikawa, S., Oguri, S., and Momonoki, Y.S. 2005. Molecular characterization of maize acetylcholinesterase. A novel enzyme family in the plant kingdom. Plant Physiol. 138: 1359–1371.

    PubMed  CAS  Google Scholar 

  • Schmeller, T., Latz-Brüning, B., and Wink, M. 1997. Biochemical activities of berberine, palmatine and sanguinarine mediating chemical defence against microorganisms and herbivores. Phytochemistry 44: 257–266.

    PubMed  CAS  Google Scholar 

  • Searle, B.W. and Goldstein, A. 1957. Neostigmine resistance in a cholinesterase-containing Pseudomonas: a model for the study of acquired drug resistance. J. Pharmacol. Exp. Ther. 119: 182.

    Google Scholar 

  • Searle, B.W. and Goldstein, A. 1962. Mutation to neostigmine resistance in a cholinesterase-containing Pseudomonas. J. Bacteriol. 83: 789–796.

    PubMed  CAS  Google Scholar 

  • Shmukler, Yu.B., Tosti, E., and Silvestre, F. 2007. Effect of local microapplication of serotoninergic drugs on membrane currents of Paracentrotus lividus early embryos. Russ. J. Develop. Biol. (Ontogenesis) 38: 254–261.

    Google Scholar 

  • Skirycz, A., Swiedrych, A., and Szopa, J. 2005. Expression of human dopamine receptor in potato (Solanum tuberosum) results in altered tuber carbon metabolism. BMC Plant Biol. 5: 1–15.

    PubMed  Google Scholar 

  • Small, D.H., Michaelson, S., and Sberna, G. 1996. Non-classical actions of cholinesterases: role in cellular differentiation, tumorigenesis and Alzheimer’s disease. Neurochem. Int. 28(5): 453–483.

    PubMed  CAS  Google Scholar 

  • Stephenson, M. and Rowatt, E. with participation of Harrison K. in addendum. 1947. The production of acetylcholine by a strain of Lactobacillus plantarum. J. Gen. Microbiol. 1: 279–298.

    PubMed  CAS  Google Scholar 

  • Strakhovskaya, M.G., Belenikina, N.S., and Fraikin, G.Ya. 1991. Yeast growth activation by UV light in the range of 280–380 nm. Microbiology (Russia) 60: 292–297.

    CAS  Google Scholar 

  • Strakhovskaya, M.G., Ivanova, E.V., and Fraikin, G.Ya. 1993. Stimulatory effect of serotonin on the growth of the yeast Candida guillermondii and the bacterium Streptococcus faecalis. Microbiology (Russia) 62: 46–49.

    CAS  Google Scholar 

  • Swiedrych, A., Kukuła, K.L., Skirycz,A., and Szopa, J. 2004. The catecholamine biosynthesis route in potato is affected by stress. Plant Physiol. Biochem. 42: 593–600.

    PubMed  CAS  Google Scholar 

  • Szewczyk, N.J., Hartman, J.J., Barmada, S.J., and Jacobso, L.A. 2000. Genetic defects in acetylcholine signalling promote protein degradation in muscle cells of Caenorhabditis elegans. J. Cell Sci. 133:2003–2010.

    Google Scholar 

  • Szopa, J., Wilczynski, G., Fiehn, O., Wenczel, A., and Willmitzer, L. 2001. Identification and quantification of catecholamines in potato plants (Solanum tuberosum) by GC-MS. Phytochemistrv 58: 315–320.

    CAS  Google Scholar 

  • Takenaka, Y., Roh, J.H., Suzuki, H., Yamamoto, K., and Kumaga, H. 1997. Metal ionic induction: expression of monoamine oxidase gene of Escherichia coli is induced by copper ion. J. Ferment. Bioeng. 83: 194–196.

    CAS  Google Scholar 

  • Taylor, S.L., Leatherwood, M., and Cieber, E.R. 1978. Histamine in sauerkraut. J. Food Sci. 43: 1030–1032.

    CAS  Google Scholar 

  • Tezuka, T., Akita, I., Yoshino N., and Suzuki, Y. 2007. Regulation of self-incompatibility by acetylcholine and cAMP in Lilium longiflorum. J. Plant Physiol. 164: 878–885.

    PubMed  CAS  Google Scholar 

  • Tsavkelova, E.A., Botvinko, I.V., Kudrin, V.S., and Oleskin, A.V. 2000. Detection of neurotransmitter amines in microorganisms using of high performance liquid chromatography. Dokl Biochem. 372: 115–117 (in Russian issue 840–842).

    PubMed  CAS  Google Scholar 

  • Tsavkelova, E.A.,Klimova, S.Yu., Cherdyntseva, T.A., and Netrusov, A.I. 2006. Hormones and hormone-like substances of microorganisms: a review. Appl. Biochem. Microbiol. (Russia) 42: 229–235.

    CAS  Google Scholar 

  • van Alstyne, K.L., Nelson, A.V., Vyvyan J.R., and Cancilla D.A. 2006. Dopamine functions as an antiherbivore defense in the temperate green alga Ulvaria obscura. Oecologia 148: 304–311.

    PubMed  Google Scholar 

  • Vardy, E., Steiner-Mordoch, S., and Schuldiner, S. 2005. Characterization of bacterial drug antiporters homologous to mammalian neurotransmitter transporters. J. Bacteriol. 187: 7518–7525.

    PubMed  CAS  Google Scholar 

  • Volkov, A.G., Carrell, H., Baldwin, A., and Markin V.S. 2009. Electrical memory in Venus flytrap. Bioelectrochemistry 74(1): 23–28.

    Google Scholar 

  • Wake, G., Court, J., Pickering, A., Lewis, R., Wilkins. R., and Perry, E. 2000. CNS acetylcholine receptor activity in European medicinal plants traditionally used to improve failing memory. J. Ethnopharmacol. 69: 105–114.

    PubMed  CAS  Google Scholar 

  • Wang, H., Wang, X, Zhang, S. and Lou, C. 1998. Nicotinic acetylcholine receptor is involved in acetylcholine regulating of stomatal movement. Science in China, ser.C 41: 650–656.

    CAS  Google Scholar 

  • Wang, H., Wang, X., and Lou, C. 1999a. Relationship between acetylcholine and stomatal movement. Acta Botanica Sinica 41: 171–175.

    CAS  Google Scholar 

  • Wang, H., Wang, X., and Zhang, S. 1999b. Extensive distribution of acetylcholinesterase in guard cells of Vicia faba. Acta Botanica Sinica 41: 364–367.

    CAS  Google Scholar 

  • Wang, H., Wan, X., Zhang, S., and Lou, C. 2000. Muscarinic acetylcholine receptor involved in acetylcholine regulating of stomatal function. Chin. Sci. Bull. 45: 250–252.

    CAS  Google Scholar 

  • Wang, H., Zhang, S., Wang, X., and Lou, C. 2003a. Involvement of Ca2+/CaM in the signal transduction of acetylcholine-regulating stomatal movement. Chin. Sci. Bull. 48: 351–354.

    CAS  Google Scholar 

  • Wang, H., Zhang, S., Wang, X., and Lou, C. 2003b. Role of acetylcholine on plant root-shoot signal transduction. Chin. Sci. Bull. 48: 570–573.

    CAS  Google Scholar 

  • Werle, E. and Pechmann, E. 1949. Über die Diamin-oxydase der Pflanzen und ihre adaptative Bildung durch Bakterien. Liebig Ann. Chem. 562: 44–60.

    CAS  Google Scholar 

  • Werle, E. and Raub, A. 1948. Über Vorkommen, Bildung und Abbau biogener Amine bei Pflanzen unter besonderer Beruck-sichtigung des Histamins. Biochem. Z. 318: 538–553.

    PubMed  CAS  Google Scholar 

  • Wessler, I., Kilbinger, H., Bittinger, F., and Kirkpatrick, C.J. 2001. The non-neuronal cholinergic system: the biological role of non-neuronal acetylcholine in plants and humans. Jpn. J. Pharmacol. 85: 2–10.

    PubMed  CAS  Google Scholar 

  • Wisniewska, J. and Tretyn, A. 2003. Acetylcholinesterase activity in Lycopersicon esculentum and its phytochrome mutants. Plant Physiol. Biochem. 41: 711–717.

    CAS  Google Scholar 

  • Yagodina, O.V., Nikol’skaya, E.B., Shemarova, I.Y., and Khovanskikh, A.E. 2000. Amine oxidase in unicellular microorganisms Methanosarcina barkeri and Tetrahymena pyriformis. J. Evol. Biochem. Physiol. (Russia) 36: 244–248.

    CAS  Google Scholar 

  • Yamaguchi, H., Friedman, H., and Yamamoto, Y. 2003. Involvement of nicotinic acetylcholine receptors in controlling Chlamidia pneumoniae growth in epithelial HEp-2 Cells. Infect. Immun. 71(6): 3645–3647.

    PubMed  CAS  Google Scholar 

  • Yamamoto, H., Shimizu, K., Tachibana, A., and Fusetani, N. 1999. Roles of dopamine and serotonin in larval attachment of the barnacle, Balanus amphitrite. J. Exp. Zool. 284: 746–758.

    PubMed  CAS  Google Scholar 

  • Yao, W.D., Rusch, J., Poo, M., and Wu, C.F. 2000. Spontaneous acetylcholine secretion from developing growth cones of Drosophila central neurons in culture: effects of cAMP-pathway mutations. J. Neurosci. 20: 2626–2637.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria V. Roshchina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag New York

About this chapter

Cite this chapter

Roshchina, V.V. (2010). Evolutionary Considerations of Neurotransmitters in Microbial, Plant, and Animal Cells. In: Lyte, M., Freestone, P. (eds) Microbial Endocrinology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5576-0_2

Download citation

Publish with us

Policies and ethics